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conditions for an optimal control and switching time are derived for a
general two-stage problem.

__The two-stage problem is then generalized to a multi-stage problem
whére the integrand of the cost functional can change from one form to
“another among N given forms at any instant for any number of times.

This problem is shown to be reducible to a standard optimal control

; problem by introducing a set of auxiliary control variables. It is

/ shown that a chattering control may be encountered due to the nonconvexity
i of the augmented control constraint set.

Next, the fixed k-stage optimal control problem is examined. For
this problem, the control is kept constant on each of the k prescribed
subintervals on which the cost functional assumes a different form.

This leads to an equivalent parameter optimization problem in k-dimensional
Euclidean space. A feature of this finite dimensional formulation is

that no approximation errors are introduced in the discretization of the
system equations.

The problem of minimum input energy plasma heating by neutral
injection is studied utilizing the derived results. This problem is .
formulated as a two-stage optimal control problem. It is shown that
! optimal heating is achieved by an on-off neutral injection program which !

is characterized by a three point boundary value problem. The results '
_ on the fixed k-stage problem are also utilized in characterizing the
\‘QQQ%mal piecewise constant neutral injection program.

The optimal heating problem is reformulated as a multi-stage optimal J
control problem using a single-temperature model of the plasma. The
optimal heating program is shown to assume one of three possible on-off
forms, depending on the heating time duration.

Finally, the stability of two classes of ion temperature feedback }
control systems is discussed. The results suggest the possibility of
regulation of the ion temperature using feedback-controlled neutral
injection. -
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ABSTRACT

Three classes of multiple stage optimal control problems are
studied. The derived results are applied to the problem of boroidal
plasma heating by means of neutral injection.

First a two-stage optimal comtrol problem having an integral
cost functional, whose integrand changes its form at an unspecified
switching time, is considered. An existence theorem and two sets of
necessary conditions for an optimal comtrol and switching time are de-
rived for a general two-stage problem.

The two-stage problem is then generalized to a multi-~stage
problem where the integrand of the cost functional can change from
one form to another among N given forms at any instant for any num-
ber of times. This problem is shown to be reducible to a standard
optimal control problem by introducing a set of auxiliary comtrol

variables. It is shown that a chattering control may be encountered

due to the nonconvexity of the augmented control constraint set.




Next, the fixed k-stage optimal control problem is examined.

For this problem, the comtral is kept constant on each of the k pre-
scribed subintervals on which the cost functional assumes a different
form. This leads to an equivalent parameter optimization problem in
k-dimenaional BFuclidean space. A feature of this finite dimensional
formulation is that no approximation errors are introduced in the dis-
cretization of the system equations.

The problem of minimum imput energy plasma heating by neutral

injection is studied utilizing the derived results. This problem is

formulated as a two-stage optimal control problem. It is shown that
optimal heating is achieved by an on~off neutral injection program
which is characterized by a three point boundary value problem. The
results on the fixed k-stage problem are also utilized in characteriz-
ing the optimal piecewise constant neutral injection program.

The optimal heating problem is reformulated as a multi-stage
optimal comtrol problem using a single-temperature model of the plasma.
The optimal heating program is shown to assume one of three possible
on-of f forms, depending on the heating time duration.

Finally, the stability of two classes of ion temperature feed-
back control systems is discussed. The results suggest the possibility
of regulation of the ion temperature using feedback-controlled neutral

injection.
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CHAPTER I

INTRODUCT TON

This dissertation consists of two parts. Part 1 is devoted to
the mathematical aspects of a class of optimal control problems which
are motivated by the problem of optimal heating of toroidal plasmas
by means of neutral beam injection. In Part 2, the derived mathe-

matical results are applied to plasma heating problems.

1.1. Optimal Heating Problem of Plasma by Means of Neutral Injection

In toroidal plasma devices such as Tokamak, the plasma is con-
fined by a strong toroidal magnetic field supplemented by a poloidal
field produced by the plasma current. At the same time this plasma
current raises the plasma temperature through the Joule heating effect.
There has been some hope that Joule heating alone would be sufficient
to raise the ion temperature to a high level such that a relatively
low power complementary heating source would be enough to achieve the
ignition temperature. However, from the recent experiments, it has
became apparent that Joule heating is insufficient for this task
and auxiliary heating such as neutral injection may have to play a
dominant role in plasma heating. Since the energy consumption due to
auxiliary heating may become camparable to that due to Joule heating,
it is important to operate the heating system at a high level of
efficiency.

In this dissertation, several optimal control problems motivated

by the heating problems of toroidal plasma devices by means of neutral

injection are studied.
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The principle of neutral beam injection heating is the following:
First, the energetic neutral beam is produced by neutralizing the
accelerated ion beam so that the beam can penetrate the confining mag-
netic field. The injected neutral particles then charge-exchange with
the plasma ions to produce fast (hot) plasma ions and slow (cold)
neutral particles. In a plasma heating experiment, neutral injection
is introduced whenthe plasme temperatures and densities arebuilt up to a
sufficiently high level. It is important to know when neutral inject-
ion should be initiated in order to minimize the total input energy
while achieving the desired ion temperature within a given time dura-
tion. Suppose the experiment starts at time t = 0 and lasts until
time t., and neutral injection is introduced at time t, e [O.tf].

Then the total energy consumption can be expressed &s

%o t

1 f
J{total energy) = I (Joule heating)dt + I (neutral injection)dt.
0 :&E (1)

The problem of minimizing (1.1) with respect to tl as well as the

neutral injection program leads to an optimal control problem with a

tvo-stage cost functional J given by

t, te
J = I Ll(x,u)dt + f L2(x,u)dt. (1.2)
ty t,

This problem will be referred to as a two-stage optimal control problem

and is one of the main problems considered in this dissertation.
Another optimal heating problem arises fram an engineering re-

quirement that the neutral beam injection program be such that the beam

current is kept constant on each prescribed subinterval of the

e ————




experiment time interval [O,tf]. This is due to the fact that it is
difficult to vary the beam current continuously in time. Moreover,

the changes of the current at arbitrary time instants are not easily

implemented. This motivates a fixed k-stage optimal control problem
with piecewise constant controls and a cost functional which takes on

k different forms on k given subinterwvals.

1.2. Multiple Stage Optimal Control Problems

The distinctive characteristic of the two-stage optimal control
problem is that the cost functional assumes different forms before and 1

after the unspecified switching time +t To solve this problem, we

1°
need to specify not only the control u but also the switching time

* %
t Two necessary conditions for an optimal pair (u ,tl) are de- i

1°
rived, one by means of calculus of variations and the other by decom-

posing this problem to two standard optimal control problems.

The two-stage problem is generalized to the multi-stage optimal
control problem such that the integrand of the cost functional can
change from one to another among N given forms any number of times.
This problem is solved by reducing it to a standard problem with the
help of auxiliary control variables.

There are some works on optimal control problems having system
equations with discontinuous right hand side and similar problems
{103, (111, [12], [13], [24], [25], [33], [%1]). However, none of the §
above works includes the treatment of a variable intermediate switch- ]
ing as a part of the control. Kleinman, Fortman and Athans [26]
mentioned the problem of choosing the switching times as a subject of

future research in their paper on a piecewise constant feedback 1




control. In a paper by Athans on the optimal measurement strategies
[1], he adopted a technique similar to the auxiliary controls dis-
cussed here. However, he did not discuss the possibility of chattering
controls which is important in considering the optimal multi-stage
controls.

The fixed k-stage optimal control problem is solved by reformulat-
ing it as a parameter optimization problem in a real k-dimensional
Buclidean space iEk. Then the techniques of mathematical programming
are applied to obtain a characterization of the optimal solutions.

The optimal control problemwith piecewise constant control but without
the assumption of a k-stage cost functional has been studied and many
standard results on this subject are available [6], [30], (31]. A
standard approach to this problem is to reformulate it as a discrete-
time optimal control problem and apply the methods of mathematical
programming. In discretizing the continuous system, an assumption is
usually made that each subinterval is sufficiently short so that the
first-order approximation for an integration on each subinterval is

satisfactory. In the plasma heating problem, the assumption of small
ad to a very rapidly changing neutral beam

current which is undesirable fram the engineering standpoint. There-
fore, we do not adopt this assumption. 1In facf, we shall not use any
approximations in the derivation of necessary conditions for optimality.
Although the approach without the small subinterval approximation is
mentioned in many texts, for example [6), [36], among the references

available to the author, none have given an explicit optimality condi-

tion for such a case.

™
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1.3. Outline of Dissertation

In Part 1, consisting of Chapters II, III and IV, a mathematical
discussion on three multiple stage optimal control problems is presented.

The two-stage optimal control problem is formulated in Section 2.1
and the existence of an optimal control pair is discussed in Section
2.2. 1In Sections 2.3 and 2.4 two sets of necessary conditions for an
optimal control pair are derived via two methods. As a special case,

a linear regulator problem with a two-stage quadratic cost is consid-
ered in Section 2.5. A sufficient condition for nonexistence of an
optimal intermediate switching is also discussed for this problem.

In Chapter III, the two-stage problem is generalized to a multi-
stage problem. The formulation of this problem is given in Section
3.1. Subsequently it is reduced to a standard optimal control problem
by introducing a set of auxiliary controls. The existence question is
discussed in Section 3.3. The possiblity of chattering controls is
also discussed in this section. A numerical example is provided to
illustrate the case when a chattering control is encountered.

The fixed k-stage optimal control problem is presented in Chapter
IV. The basic formulation and an equivalent parameter optimization
problem are given in Sections 4.1 and 4.2 respectively. A necessary
condition in integral form is presented in Section 4.3,

Part 2 is composed of Chapters V and VI. The results derived in
Part 1 are utilized in analyzing several problems of plasma heating by
means of neutral injection. Chapter V is devoted to a discussion of
the minimum input-energy plasma heating problem using a two-temperature

model of the plasma which is given in Section 5.1. The existence and




the characterization of an optimal neutral injection heating program
are discussed in Sections 5.2 and 5.3 respectively. The discussion of
the optimal piecewise constant neutral injection program is then pre-
sented in Section 5.4.

A simplified single-temperature model of the plasma is adopted
in Chapter VI. The minimum injection energy problem using this model
is formulated in Section 6.1, where the existence of an optimal in-
Jection program is also discussed. The characterization of the optimal
injection program is given in detail in Section 6.2. We then discuss

the dynamics and stability of various ion temperature feedback control

systems. The analysis includes the effect of measurement time-delay

on the stability of the total system.

. ————— e
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CHAPTER II

TWO-STAGE OPT'IMAL CONTROL PROBLEM

The two-stage optimal control problem is introduced in this
chapter. The existence and characterization of an optimal pair (con-

trol, switching time) are discussed.

2.1. Formulation of Two-Stage Optimal Control Problem

In this section we formulate an optimal control problem with a
two-stage cost functional.
Consider a system described by a vector differential equation on

a fixed time interval T & [to,tf]

%2 % = £{x,u,t), (1.1)

where x(t) ¢E" and u(t) €IE™ are the state and control vectors
respectively. f is an n-dimensional vector-valued function which is
assumed to be continuous in " x.'!.'l:'.m x T. Fram now on, we denote

"d/at" by "+". The initial and final conditions are given by

x(to) € XO, x(tf) € Xf, (1.2)

where XO and Xf are nonempty closed sets in E".

Definition 1.1. A control u is said to be tl~admissible for a given

switching time tl ¢T ir

L there exists a corresponding unique solution of (1.1) which

satisfies (1.2),




2. u(+) 1is measurable on T and u(t) satisfies a control

constraint

Ql’ a.e. on [to,tl)

u(t) € ’
0,, a.e. on [tl,tf]

@€.3)

where the nonempty campact sets Qic;]Em, i=1,2 are called the con-

trol constraint sets. "

The set of all tl—admissible controls is denoted by &y . A pair
1

(u,tl) is called an admissible control pair if t, €T and u e Atl.

We denote the set of all admissible control pairs by A.

Definition 1.2. For an unspecified switching time t. € T, we define

1
the two-stage cost functional J(u,tl) by
- [.t'f
J(u,t) = | L(xu,tat + | L(xu,t)at, (1.4)
1 % 1 Jt 2
0 1l
where x is a solution of (1.1) and (1.2), and L,, i = 1,2 are

i’
continuous in E” xE" x T. I

Now the two-stage optimal control problem is defined as follows.

Problem (T): Given a system (1.1), a control time duration T,
initial and final conditions (1.2), control constraint sets Ql and
92 and a two-stage cost functional (1.4). Find an admissible control

*
pair (u*,tl) which minimizes the two-stage cost J(u,tl), 1@,
* *
J(u,ty) <I(u,y), (1.5)

for any admissible control pair (u,tl) € A. "

e e m———— oy - p———




*
A pair (u*,tl) is called an optimal control pair and its corre-

sponding solution of (1.1) is called an optimal trajectory and denoted

»*
by x . A trajectory x corresponding to an admissible control pair

(u.tl) is called an admissible trajectory.

2.2. Existence of Optimal Control Pair

We give a set of conditions which guarantee the existence of an
* *
optimal control pair (u .tl) by analyzing the properties of the

attainable set at time ¢ viz, the set of all right hand end-points

f)
of the admissible trajectories x(t) at t = tee
Consider the augmented systems described by

; [Li(x'u't)] e ¥ El,e (2.1)
Yy = = Yislyt), = l,c, .
1 fix.u,t) 11

">

where yi(t) (xg(t).x(t)) eIEn+l, i = 1,2 will be referred to as
augmented states., The first coordinate xg(t) represents the time

evolution of the cost
t

xe) = [y (x(s),u(s),8)as, (2.2)
%
0]
associated with the trajectory x specified by the last n coordin-
ates of ¥y i = 1,2. We define augmented attainable sets Ki(t;T.E),

i1=1,2 by

K, (£37,E) &y K, (£37,), (2.3)
YEE




i
Ky (857,5) £ Ly, (¢) ¢ yi(t) =y + JT £,(y;(s),u(s),s)as,

u(s) ¢ 94, 8.€. on frs6l) (2.8

Then the set of all end points at t = tf of the augmented trajectories
corresponding to tl-admissible controls, denoted by K(tl), can be

expressed as
A T
where Yo = [O,XO] is an augmented initial point such that

Vo € Yo 2 tl0,x,)" % & X ) (2.6) 5

We first prove the following theorem.

Theorem 2,1. Assume that
s 01,92 and XO are campact;
2. there exist nonempty sets !%1 c_:_.'!En and Re g;]‘En such that

for i =1,2, there exists a unique solution 9 for (1.1)

R —

with cpi(to) =X, X, ¢ R’i’ for any control u satisfying
u(t) e 94, a.e. on T, and R - R, N R, is nonempty;
3. f 1is continuous and Hf”n is bounded by Mo <o in

R x {Ol Uyt x T, and L, are continuous and lLil are

e ——— oy -

bounded by Mz <® jin RX QixT, 1= 1,83
L, XO C R and any trajectory ¢ with cp(to) € X, correspond-
ing to a control satisfying condition (2) of Definition 1.1

for same tl € T remains in R, i.e.

olt) eR v t €Ty (2.7)




i ?
'; |
E
| i the sets of augmented velocity vectors defined by
2
L,(x,u,t)
Vi(x.t) [:\{[ 1 ] € IEn+1 tu € Qi} A (008)
f(x’u’t)
’ are convex for fixed x and t in R X T.
Then h(tl) is caompact for any tl € T and varies continuously in
L t; with respect to the Hausdorff metric.t ||
2
Proof: From conditions (3) and (4), for any solution y, of (2.1)
with any control u satisfying u(T) ¢ Ol a.e. on [to,tl] and any
“ yl(to) €Y, = {(O,xo) PXy € xoj,
t
K s
yl(t)unﬂ = !lyl(to)”n+1 £ Jt fffl(yl(T)’u(T)’T)'ln+l ar
0
SCo + Mty - b)) <= (2.9)

& " i
vhere Cg = xna.xxoexO xO“n and M = max{M.,M,}. This implies that
there exists a compact set ﬁl c R such that yl(t) € Rl for all

t € T. Hence under the conditions of this theorem, Kl(t.;to,xo) is

*The Hausdorff metric h(A,B) defined on the space of campact sets in

IEr is given by _-.

h(A,R) = max{max d(a,B), max d(b,A)},
ael beB

where d(p.,B) is the distance between the point a and the set B given

by d(a,B) = min |a - b]_.

beR

e lr is any valid norm defined on ET.




compact for each t € T and varies continuously in t [3]. Sim-

ilarly for any solution Yo of (?.1) with any control u satisfying

u(s) ¢ 0, a.e. on [T,t] and any y2(7) € Kl(v;to,xo),

2
}
ot lyay < a3 + ) IEp(ya(s)ulse)ys)l,,, ds
T
L [co + M(t, - to)} + Mty - to) < ®, (2.10)

Therefore K?(t;T,Kl(T;tO,XO)) is also campact for each t € T, T € T,
T < t, and varies continuously in t. Hence x(tl) = Kz(tf;tl,l(l(tl;to,yo))
is compact for any tl €T. Next we show the contimity

t, €T, 1 = 1,2. Suppose 1

of )\(tl) with respect to t,. Let t, < to N |
that a point Pl is in )((tl). Then there exist a point P3 € Kl(’cl:
to,yo), a control uy satisfying ul(t)e @, a.e. on [tl,tf] and a
corresponding augmented trajectory vy such that
ot .
P, = yl(tf) = Py + Jt f2(y1(t),ul(t),t)dt. (2.11) ?
1

On the other hand, since Kl(t;to,yo) varies continuously in t,

there exists a point Ph € Kl(tE;tO"vO) such that for every el > U, i
there exists a Oy 0 !
o §
)
[ty - tol <8 =By - Byl 5 <&y | t
Fi
‘ 2
Let P, ¢ x(t ) = K (tpity, (t O,yo)) be given by ; ﬁ
te T
- - | o v
P, = ¥p(te) = B + Jt £(¥o(t) uy (), t)dt, (2.12) ﬂ
2

12
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Now, under the assumptions of this theorem, it is known that the solu-
&,
tions for the augmented system (2.1) depend continuously oninitial condi-
tions [ 7). In fact we have for every ¢ > 0, there exists a 8, >0
such that
L
1ty - tol + 1Py - Bllpy < 8= fyy(8) - vp(W)llyy <&y
(2.13)
f uniformly on [ta‘tf]' Hence for a 51 >~ 0 such that €, + 51 < 52,
we have for every € >0
; |tl & t2| < 6l-$ HPl - P2”n+1 = »yl(tf) - y2(tf)”n+l <E. (2.14)

This implies that K(tl) varies continuously in t, on T. "

Next, we find a subset of h(tl) which corresponds to a set of
end points of admissible trajectories. Since the end point of any
admissible trajectory must lie in Xf, the end point of any augmented

admissible trajectory must be in h(tl) n Yf for same tl ¢ T where

A ¢ 0 n+l 0
= {yp = (xf.xf) eIR : X free, x. ¢ Xf]. (2.15)

1 £

T

In other words, any pair of t. € T and the end point Ve of an

1
augmented trajectory corresponding to some tl-admissible control,

(4159) € ™ 2w s %0 N2, where,
p n+e ) g
2% U L(tyay) € B 1y e Mt (2.16)
tleT
{-\ . ) - ’ v g
Zo= U {(tl.y) e =2, ¥ = txO.X) € Yo} (2.17)

tieT

.

o —— e g — e e e e g



The set G 1is illustrated in Fig. 2.1. Suppose the set A is non-
empty and compact, then an optimal control pair (u*,t;) exists,
since for a campact A, there exists a point a.* in A which has
the smallest second coordinate value among all points in A. The

*
first element of a is the optimal switching time t The optimal

*
1
*
control u is given by the control which realizes the corresponding
* »*

augmented trajectory y whose end point y (tf) coincides with the
*

last n+l elements of a .

We shall show the campactness of A =G N Zf, hence the existence

* *
of an optimal control pair (u ,tl), in the following theorem.

Theorem 2.2. In addition to the assumptions (1)-(5) of Theorem 2.1,

we assume that

0. the set of tl-admismble controls At‘l is nonempty for tl

in a nonempty closed subset 'I‘s &

Then A=GNZ is a nonempty compact set and an optimal control

i
* * ‘
pair (u ,tl) exists. ||

Proof: The nonemptiness of G N2, is guaranteed by assumption (6).

Hence it remains to show the campactness of G N Zf. Since Xf was

n+2

assumed to be closed in ]En, Z is also closed in IE . Therefore

£
if G is compact then G N Zf is also campact. Obviourly G 1is
tounded; we only need to show the closedness of G. Let {gij be a

sequence of points of G which converges to a point g. We show

that g € G by contradiction.




'
Cost

State

Fig. 2.1. Set }(,(tl) and its Graph G




Suppose g £ G. Let € ¢ %2 and g € E? pe given by

. 2 t1a = El : (2.18)
St & P Ty 1Y

Then g, € G and g ¢ G implies ¥y ¢ K(tli) and y £ x(tl) re-
spectively. We note that %, = lim, oty

Now since K(fl) is compact, there exists a ball B(y,e), € >0 in

€ T since T is compact.

E"! such that B(F,e) NK(E)) = @, where
B(Y,e) = ¥y : Iy - ¥llp,y <€l (2.19)
On the other hand, since 8 converges to g, for every g > Q5

i
there exists I, such that Lgi g”n+2 <€, 12>1I,. Hence for
every € >0, there exists I, such that |tli - €1| <€, and
lyy - ¥l < €/2 (2.20)
for 1> 12' This implies that
Ay, K(E))) > -d(yy,¥) + aF,K(E)) > -g/2 + € = /2. (2.21)

Hence h(K(ti),h(fl)) ~ e/2 for same € > 0. This contradicts the
continuity of X(tl) with respect to the Hausdorff metric. Therefore
y ¢ X(Ei), j.e., g€ G. Thus G is compact and an optimal control

pair (u*,tz) exists. “

Remark: let G c E°'°

. be defined by

S U e e By e nt) ) (2.22)

tleTs

G
S

i it i T



Then assumption (6) implies
GN2Z,=G, NZ, # B, (2.23)

*
Hence t. exists in T_. “
1 s

We note that the conditions (1)-(6) are similar to those of the
standard existence theorem [ 3 ]. In fact, under these conditions,

*
there exist optimal controls u

10 i=1,2 for the problems with the

cost functional
J.(u) = j Li(x,u,t)dt. (2.24)
(See Appendix A.)

2.3. Necessary Condition for Optimality

Under a set of appropriate assumptions, a necessary condition for
an optimal control pair (u*,t;) can be derived via direct computa-
tion of first order variations. The result is a modification of a
well-known necessary condition in calculus of variations for a standard
problem with no intermediate switching. A set of assumptions and con-

ditions are summarized in the following theorem.

Theorem 3.1. Consider system (1.1) and cost (1.4). Assume that the

control time interval T = [to,tf] is fixed. Let the initial point

x(to) = X, be fixed and the terminal point x(tf) be free. Assume
that . 1is continuous everywhere except possibly at tl. Also assume
that u(t) is unconstrained. ILet f, L. and L. be twice continuous-

il 2
ly differentiable in x and wu, and continuously differentiable in t.

i




Define the Hamiltonians Hi(x,ﬁ,u,t) by

Hy(X,P,0,t) = Ly (%,u,8) + p'E(x,u,t),  1=1,2, (3.1)

where p(t) is an n-dimensional adjoint vector. We use the superscript
"*" to denote optimal quantities. Now, assume there exists an optimal
; € (to,tf). Then it is necessary that
there exists a function p* such that x* and p* satisfy a set of

* %
control pair (u ,tl) where t

canonical equations given by

dH, /3p (x*,p*,u*,t), t.oet <t
oX * ¥ 1 1 e 1
x = f(x ,u ,t) = e . 3
BHE/ap (x ,p ,ua,t), tl <t <t
(3.2)
M /3% (X 5D su,,t) t
2: - Hl x (x ,p ugst), to <t < tl
R = ’ (3-3)
* * »*
-BHQ/ax (x ,p Ups i ty <t <t
with boundary conditions
*
x*(to) = xo9 P (tf) = 0, (3-’"’)
®, * *, *
P (tl—) =P (tl+)) (3'5)

* * * »* *
where p (tl-) and p (tl+) are the left and right limits of p (t)

* *
at t, respectively and Uy i=1,2 are solutions of

1
* * * *
BH, /3u (x7(t),p (t),u,(t),t) = 0, t) <t <ty

* * * * .
3Hy/3u (x7(t),p (t),uy(t),t) = 0, b <t <t

18
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Also the following transversality condition is satisfied at t;
* * * H* * * * * * *, * *, ¥ *
Hy(x (805D (67)5 4y (6) 58 ) = Hy(x7(6)),0 (8) un(83),4),  (3.7)

where we have used (3.5). "

Remarks :
*
(R.1) When t, = ty, the boundary condition (3.5) is irrelevant and

the transversality condition (3.7) is modified to
* * * *
Hl(x09p (to)’ ul(to)’to)sﬂg(xolp (to) !ug(to))to)' (3-8)

*
Similarly, for t, = tg, (3.5) is again irrelevant and (3.7)

is now replaced by

B (x(£,),0 juy(t,),8.) > B(x'(£,),0,u5(t,),t,),  (3.9)

or
B (" (5,0 07 (5,0 58,) < BalX (6,0 5u5(t,) ,80) (3.10)

(R.2) The conditions (3.6) and (3.7) are the two extra conditions for
*
our two-stage aproblem. (3.6) states the continuity of p (t)

*

* »* *
at t; and (3.7) states the matching of H, and H,at t). I

A lengthy but straightforward derivation of the foregoing con-

ditions is given in Appendix B.

2.4, Decomposition into Standard Problems

We derive a necessary condition for an optimal control pair
*
(u*,tl) in the form of a maximum principle by decamposing the original

problem into two standard problems. In this section, £, L1 and Lp

19
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are assumed to be continuously differentiable in x, u and t. We
*
start our discussion fram the case t, ¢ (to,tf).
First we consider an auxiliary problem which corresponds to the

second stage of the original problem.

Problem 1. Given a system x = f(x,u,t), a control time interval

[tl,tf], initial and final conditions

x(tl) =X x(tf) ¢ L. (%.1)

1’ f

and a control constraint that wu(-) ic measurable on [tl,tf] and

u(t) € Q a.e. on [tl,tf]. (4.2)

29
*
Find an optimal control u which is admissible and minimizes the

cost Ja(u) given by
t

f
Ja(u) = f L2(x.u,t)dt, (%.3)

b

over all admissible controls. "

Note: 1In this section, a control u is sald to be admissible whenever
1. there exists a corresponding solution for the system equation
which satisfies the initial and final conditions,
2. u satisfies a control constraint.
It should be noted that the system equation, initial and final condi-

tions and control constraint may vary fram problem to problem. "

e . ———— oy -



Problem 1 is of standard form and can be solved using the

Pontryagin maximum principle. Let the Hamiltonian H2 be defined by
A
Hg(x’p’u,t) = 'Le(xﬂlst) + P2f(x9u9t)’ (h-h)

where Py is an adjoint vector. Let u; and x* be an optimal
control and its corresponding trajectory. Then there exists (see the

maximum principle presented in Appendix C) a corresponding adjoint
vector p* such that | 3
PR T e s e O TR O Y 5 |
(%.5) |

¥ * XX T * x
P, = - {0Hy/3x (x ,ppsup,t) ), Po(te) | 1o s (4.6) |
* * * *
b)  max Hy(x'(t),ph(t),unt) = Hy(x (£),0,(t) ;up(t),t)

u~e Q

2 2

a.e. on [tl,tf], (4.7) |

where n; is a tangent plane to x, at x*(tf). !

Now, suppose that we solve this problem for fixed tl and xl |

*

and express the optimal cost J2 as a function of tl and Xy l.e., |

*
2:

3 J;(xl,tl). (4.8)

Then we can reduce the original two-stage cost (1l.4) to a cost in

e e ——— gy -

*
standard form by substituting J2' Thus the original problem can be

reformulated as follows:

Problem 2. Given a system x = f(x,u,t), initial and final conditions

x(to) € Xpe by € (to,tf) and x(tl) free, (4.9)




and a control constraint that u(:) is measurable on [to,tll and

u(t) ¢ 0 a.e. on [to,tl], (4.10)

1,
where [to,tl] is the damain of definition of wu. Find an optimal

*
control u* defined on an optimal interval [to,t;], tl € (to,tf)

which minimizes the cost
t

~ 1 *
J(u) = J L (x,u )8t & I (x(t.)5.) (k.11)
1 2 1l 1
t
0
le., E(U*) <J(u) for any admissible control u defined on any

interval [ty,t,) where ) € (t;,t.). I

*
Remark: Since we have assumed that tl € (to,tf), the constraint
tl € (to,tf) is irrelevant. Therefore this problem reduces to a
problem with free terminal time and end point. The other cases

* *
t) = t, and t) = t. will be treated later. ||

Using the results in Remark 3 of the maximum principle in Appendix
C, we have the following set of necessary conditions for an optimal
* *
control u and an optimal terminal time tl. Let the Hamiltonian Hl

be defined as

Hy(%,0,u,8) = -y (X,u,8) + PrE(X,u,t). (4.12)

Then,

* *
a) there exists an adjoint vector Py defined on [to,tl]

such that

22




- * ¥ * *
X - {aﬂl/apl (x ’pltul!t)}T, X (to) € xo) (l*-13)

- Loy /ax (x,pp,uy,t00 ), By(t) LI, (4.11)

h
X *
where Ib is a tangent plane to X, at x (to);
* * * * *
uliﬂl

a.e. on [to.t;]; (%.15)

* *
c) p;(tl) and Hllt* satisfy the following transversality
1

conditions,
py(ty) = - {7 /ax (x"(£)),t) T, (4.16)
Hy (X (1) 403 (£7) 0y (87),87) = 305/36, (x"(67),8,).  (h.17)

On the other hand, by the help of additional regularity assump-

tions, the right hand sides of (4.16) and (4.17) can be computed as
* %1
3, /3%, (%) ,81) == Py (%) (%.18)
* X *
aJe/atl(xl, l)=dJ2/dtl(xl, i ) % (aJe/axl(xl,tl))dxl/dtl

= Ho(x"(8) Pty ) () sty ). (4.19)

By comparing (4.16) to (4.18) and (4.17) to (4.19) we have

* % * %
* ¥

Ho | % = H |, *, (h.21)
1 tl 2 tl

* * * *
where we abobreviate Hi(x ,pi,ui,t) by Hi’ 1= 1,8,

o

i




Thus we have established the following theorem.

* *
Theorem 4.1. Suppose that (u ,tl), t) € (to,tf) is an optimal
control pair for the original two-stage cost problem, then it is

*
necessary that there exists an adjoint vector p such that,

* *
a) an optimal trajectory x and p satisfy the set of

canonical equations given by

* T * w
: {oH, /ap}", by St <ty s ‘
*® - * T * v
{BHe/Bpj * b stets, >
* *
x (to) € X, and x (tf) € fo
\
I
: -{BHl/bx}, tg St <t _.
B - (%.23)
T
-{aﬁe/ax} ¢ ty <t <tp L ; j

Pt L ana p%ey) | T | |

b)  the Hamiltonians H i = 1,2 are maximized by u as

1
- g r
: |
max H, (x"(£),0' (t),0,8) = Hy(x" (£),0"(t) 0’ (t),t), 1
€N
e a.e. [to,t;) :
* * * * * L; (k.24)
max H2(x (t) P (t) 9u9t) = Ha(x (t)vp (t)’u (t)’t),
ute *

*
a.e. (tl’tf]




X
c) The following transversality condition is satisfied at tl, 1

* *
= 4.2
Hllt; = Heit’{ : " (4.25)

*

*
Now, for the cases t, = tO and tl = we have the following

1 tf’

result:

*

l=
*

necessary that there exists an adjoint vector p such that for all

*
Theorem 4.2. Suppose that t t, (resp. by = te), then it is

% €T,

o

s) X {BH;/apfr, (resp. - in;/ap}T) |

(4.26) |

*
x (to) € X,y ¢

*
and x (tf) R

(¥ i LR T
-15H2/ax} , (resp. p = -{aﬂl/éx} )

.
i

* * * * 4 (l"27) |
P (to) j_xb and p (tf) 1t i

*
b) u satisfies

max H(x (£),D (t),u,8) = Hy(x (£),p (t),u"(t),t)
u€{}2

* * * ?h.EB)
(resp. max Hi(x*(t),p*(t),u,t) = El(x (t),p (t),u (t),t))

ueql

a.e. on T

R e

t ot t. = t,) weh
e) a tl = to (resp. 1 = bg) we have




B (x" () 50 (tou (6 80) SH (" (65),0" (0) (o) to)
(resp. H (x"(£,),0 (t,),01 (60),8.) 2 Ho(x (6,),0 () un(t,) b N

(4.29)

* X
where ui maximizes H.1 “

*

Proof: We will consider the case tl :to only. The other case t; =t
can be treated similarly. The conditions (4.26), (4.27), and (4.28)
are derived respectively from the conditions (4.23), (4.24), and (4.25)

of Theorem 4.1. Now, from (4.1) we have for tl €T,

t
1 : .
J*(tl) 856" - f L(x,uy t)dt + J;(x*(tl),tl)
0
t
5 jl * %, *
% Lyl at + Jy(x (t)),%). (4.30)
Then
dJ* % d t]_ *I %, *
d-t'I ( 1) = d_tl- { ‘ft Ll & dt + Jg(x (tl),tl)}
0

3 * o X "

Lily +ady/axl, x () +ady/at, I, (4.31)
1 1 gl

Now using (4.18) and (4.19)

X
dJ * X T *
at, (t,) = Il‘tl “piY)t 't1 ¥ H2|t1=-H1|t +Holy

5 i e
(4.32)
For the optimality of t; = to, we must have
X
aJ
at, (tg) 2 0. (4.33)

Therefore

This gives (4.29).




r

* * *
Remark: When H l and/or H | do not exist (for example, if u
it 1 tl 2 tl

* *
is discontinuous at t.), we replace H ( and H { by the left
& 1 ty 2 ty
N *
and right limits ”1|t1- and He'tl+ defined by
% lin K,
Byl s ® g e 0
1 €0 1 (%.35)
e>0 5
Ha| lim H| I
i , ’
2 tl £=0 2 tl+s
e>0

2.5. Special Case
As a special case, we consider a state regulator problem with a
linear system and a two-stage quadratic cost. The system and the cost

are defined on T = [to,tf] by

x(t) o AX(t) 2 Bu(t)’

{5.1)
x(to) = X, £ 0 given and x(tf) free,
t
Ly T T
I = [ (x(6)TQx(t) + u(t)T Rpu(t))at
to

1
2
te

+ J; % (x(t)Tqax(t) +u(t)T Rju(t))at, (5.2)

where A(n x n), B(n x m), Qi(n x n), R./m x m) are constant matrices

and Qz = Qi >0, Ri = Ri >0 for i =1,2. We consider no con-
straint on u(t), i.e., ) =0y = E" .

For this problem, the cost for the corresponding decamposed prob-
lem (1) is given by
t

-
Iy = I; %(x(t)TQEx(t) + u(t)T RéU(t))dt. (5.3)

-




It is well-known that the adjoint vector p2(t) and the optimal

*
control ug(t) are given by

p,(t) = -Sy(t)x (1),

]

(5.4%)

u;(t) R;lBTpg(t) . -RélBTSZ(t)x*(t),

where n x n matrix S2(t) is a positive definite solution of matrix

Riccati equation:

& ! i «1. T
og(t) = -Sa(t)A -4 se(t) -Q + Se(t)BRalB Se(t)’
(5.5)
SQ(tf) = 0.
*
Also the optimal cost J2 can be written as
* 1 i T
( o

Now, using (5.6), the cost for the decomposed problem (2) is given by,

t
¥ 1
= 35X x(t ) S, (t )x(t )+ f 5 x(t)Tle(t) &L u(t)TRlu(t))dt.
O
(5.7)
For a free tl and free x(tl), problem (2) can be solved as
follows:
py(t) = - S, (t)x (%)
\ . s
. 2 (5.8)

-1 T

uy(t) = RI'ETRy (%) = -R'B'S (£)x (),

where Sl(t) is an n x n positive definite matrix solution of another

matrix Riccati equation:




) » < B (e ATs {t) -9, +8 (t)BR'lBTS (t),
3 1 1 1 1 1 1 (5.9)
sl(tl) = Sz(t1)°
*
Next we compute Hi’ i = 1,2,
* 1, *T_ * *p_ * T, * *
Hy = - §(xi QX +u, Riui) + pi(Axi + Bui), (5.10)
*
where x., i= 1,2 are solutions of {5.1) with controls (5.8) and

(5.4) on [to,tl). and [tl,tf] respectively. Algebraic computation

using (5.4) and (5.8) yields,

* 1 %, ¥ T s *, K, ¥
Hllt; = 3% (t))" S;(t)x (¢,),

(5.11)
* Pree. eIt e ¥k, *
H2|t.i =5 x ()7 S,(t))x ().

*
Hence the transversality condition Hllt* =H is

>
*
R

0 = X" (8)"1-§, (87) + S,(¢7) (8]

n

x"(e)" 1Qy - @, - S,(4)B(RTY - RFHEIS (6] b (8)) . (5.12)

We notice that if the matrix Q(t) defined by
At) 2 q - Q- S (B)B(RT - RZIBTS, (1) (5.13)

is either positive or negative definite for all t € T, then the
*
transversality condition (5.12) can be satisfied only by x*(tl) = 0%

* *
But since the canonical equation for x (t) on [to,tl] is given by

*(t) = (A - BRilBTsl(t))x*(t), (5.1%)




a5 -

o

* *
then x (t) = 0, if x (t) = O at some time. This contradicts the
condition x(to) # 0. Hence the definiteness of the matrix @Q(t)
gives a criterion for the nonexistence of an intermediate switching.

This is summarized in the next theorem.

Theorem 5.1. Suppose Xy £ 0 and the matrix ﬁ(t) defined by (5.13)

*
is positive (resp. negative) definite for all t ¢ T, then ty = t,

(resp. t; = tf). "

%
Proof: We already know that tl is one of the end points to or tf.
*
Hence we only need to show that tl = tO for the positive definite

~

Q(t). The other case can be shown similarly. The positive definite-

ness of Q(t) and (5.12) gives

* * 1 * T ~ *
%
for all t, ¢ T. Now let J (tl) = m1nueAtl J(u,tl) as it was de-
fined in Section 2.2. Then we have
*
aJ (tl) *l *l ’
vl Wi Ny (5.16)

as is shown in Appendix B. There.ore dJ*(tl)/dtl >0 for ail
oo

Thus, for this special case we have derived a sufficient condi-

*
t, € T. 'This gives ¢t t

1 i

*
tion tor €

1 to be one of the end points to or tf.

T ——
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CHAPTER TIIT

MULTI-STAGE OPTIMAL CONTROL PROBLEM

The two-stage optimal control problem is generalized to the
multi-stage optimal control problem in this chapter. It is shown that
the multi-stage problem is reducible to a standard optimal control

problem by introducing a set of auxiliary controls.

3.1. Formulation of Multi-Stage Optimal Control Problem

We will now generalize the two-stage optimal control problem to
the multi-stage optimal contral problem by allowing the integrand of
the cost to switch any number of times. The integrand can switch fram

one form to another among N given forms.

As before, we let the system, the control time interval and the

initial and final conditions be given as

x = £lx0,t); (1.1)

A .
t e TS [tta), (1.2)
x(t5) € X, cE®, x(tg) € X, cE". {3.3)

Let [Qi,Li(-,-,-)j, i=1,2,...,N be N given pairs of a control
constraint set and cost integrand such that @ 1 is active when Li
is chosen as a current integrand of the cost functional. We assume

0, to be a convex compact set in 5" and, f and Li to be con-

i
tinuous in IEnx]meE, s IR T L N

—

e ————— -




Definition 1.1. We define a switching schedule SK to be a (2K-1)-

tuple [tl,tz,...,tK_l:il,i2,...,iK] where K is the number of

stages; tj. J = 1,80 K1, tO < tl = t2 e tK-l < tf. are

the switching times: and ij’ J=1,2,...,K are the indices of pairs

‘ , Sgl-sao N
(fij,Lii) chosen for subintervals [tj-l’tj)‘ AR - T o tK = tf."

It should be noted that, since the number of stages is free, K

may vary fram one schedule to another,

Definition 1.2. A control u is said to be &K-admissible o B

I there exists a corresponding solution of (1.1) which ;
satisfies (1.3);
2. wu(-:) 4is measurable on T and u(t) € 0y a.e. on
J

( t,)s 3 = 1,200k, I f

tj-l'
The performance of an SK—admissible control u is measured by a

cost functional J(u) given by
t

A K\ d
Ha) e B I Ly (x(t),u(t),t)at. (1.4)
,j=-1 t]-l j

Now the multi-stage optimal control problem can be stated as ‘

follows:

Problem (M): Given a system (1.1), a control time interval (1.2), f
initial and final conditions (1.3) and N pairs of control constraint 1 3
sets and cost integrands {Qi.Li}. 1= 1,8¢0¢yN. Filnd a switching

* x x * X *
schedule ska = [tl’“"tK*-lzil""’iK*] and QK*-a&missible control

*
u such that

—* ~
-

i e, M i




K tj*
J(u*) = 2 I L, (x*,u*,t)dt < J(u) (1.5)
j=1 tj_l J

for any switching schedule SK and for any RK-admissible control u. "

Such a pair (ﬁ;*,u*) is called an optimal pair, i.e., the super-
sceript "*" denotes optimality as before. A diagram showing the informa-
tion flow in this problem is given in Figure 3.1.

The multi-stage problem differe significantly from the two-stage
problem in two ways: (1) the sequence of integrands of the cost func-
tional is not fixed, (2) the number of switchings is not fixed. 1In
particular, we do not know beforehand whether the optimal solution for
the multi-stage problem has a finite number of stages. This question
involves the existence of an optimal auxiliary control which will be
introduced in the next section. We will discuss this point in later

sections.

3.2 Reduction to Standard Problem

In this section, we reduce the multi-stage optimal control problem
to a standard optimal control problem using auxiliary controls.

First we define N auxiliary controls v 1 = 1585..«N Wwhich

i’
satisfy the constraint:

vi(t) « 0 or ‘1y 1e 18,0048

a.e. on T, (2.1)
N
L ov,(t) =1
i=1
We also define an auxiliary control vector v = [vl,ve,...,vN]T and an

augnented control u
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u System: x

;:-r(x,u,t)

Costils [L1 (x,u,t)

Switching
Mechanism

Cost2: sz(x,u,t)

i

)

N
£ G

CostN: fLN(x,u,t)

Fig. 3.1, Multi-Stage Optimal Control Problem:

Schematic Diagram of Information Flow
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ppp— f-&um YT S R S

G:[ﬁ]eﬂ””. (2.2)
Let Lo(x,ﬂ,t) and @ be defined as
Ib(x,u,t) = 2 viLi(x,u,t), (2.3)
i=1
oA 2 m+N
Q= U {(uy,e.) € IE s 0, € 0.3 (2.%)
Pt T 1 €%

where ey denotes the unit vector in IEN with unit i-th camponent.

We note here that the vector v can be considered to represent a

mathematical realization of the switching mechanism shown in Fig. 3.1.
The constraint (2.1) on vi» i=1,2,...,N implies that at al-

most every instant of time t € T, one of the vi(t)'s, S bt sl

is equal to one and all the others are zero. Hence at almost every

t e, Lb(x,ﬁ,t) is equal to ome of L (X,u,t)'s, i = 1,2,...,N,

depending on which vi(t)'s, i=1,2,...,8 is equal to one. Similarly

the augmented constraint set 5 can be interpreted as u(t) € Qi when

vi(t) =1, 1i=12,...,N. Thus when vi(t) = 1, the integrand of the

cost is L,(x,u,t) and the constraint set is Qps 1= 1,2,...,N.

4
*
Therefore, finding an optimal auxiliary control v  is equivalent to

¥
finding an optimal switching schedule '(:K*‘

Now we reformulate the reduced multi-stage optimal control prob-

lem as follows.

Problem (R): Given a system

i e E(x";ot) é\ f(xyu’t) ’ (2-5)
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on a control time interval (1.2) with initial and final conditions

(1.3) and a cost functional

3 o
J(u) = f Lo(x,u,L)dt. (2.6)

B aal Ae o

N* -~
Find an admissible control wu which minimizes J(u), i.e.,

~% ~, ~
J{u ) <J(u) for any admissible u. ”

Note: Here we define admissibility of J as follows.

1. u steers x from x(to) eX. to x(tf) e X

0 ik 1

is measurable on T and u(t) ¢ { a.e. on T. "

£

&

Problem (R) is in the standard form and the known results of con- ‘

trol theory are directly applicable. In particular, standard necessary
conditions are applicable for the characterization of ﬁ*. We will be
content with noting that the maximum principle of Appendix C is applic-
able to this problem. We will not give explicit details here. }
On the other hand, a difficulty is encountered in ensuring the |
existence of ﬁ*, due to the fact that the augmented constraint set
0 is never convex. Hence we may experience a situation where the
optimal control is a "chattering" control. This will be discussed in

detail in the following section. Furthermore, from an engineering

point of view, it is not feasible to have an infinite number of

e L S —

switchings. That is to say, v* should have only a finite number of
discontinuities. We demand a piecewise continuous v* rather than a
measurable v*. There have been several papers on the existence of
optimal piecewise continuous controls e.g. Haukin [21], Halkin and

Hendricks [22], and Grimmell [19]. However these works treated only
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systems which were either linear, or linear in the state variable.
The existence of optimal piecewise continuous controls for more general
systems is still an open question and remains a subject for further

research.

3.3 Chattering Control

For the existence of optimal measurable controls, most of the
standard existence theorems require a set of augmented velocity

vectors

Yo
Vix,t) é—:\ {[ \t] € mn+1 : yO = L(x,u,t), Y = f(x’u,t)’ u € 5‘},
: (3.1)

or a set V'(x,t) defined by

0
V+(X,t) Q{[yy] ¢ IE kL : .VO o L(x.u,t), ¥ = f(xvupt')’ ue “} )

(3.2) !

to be convex for each x and t (see Appendix A). This almost ex-
clusively requires the control constraint set ¢ to be convex. In
general, for problems which satisfy all except the convexity condition
for the existence of u*, an optimal control may not exist but the
optimal "relaxed" control may exist for the corresponding "relaxed"
problem. Warga [42] gives an extensive discussion on the relaxed
problem and Berkovitz [ 3] has a concise presentation. Roughly speak-
ing, the idea of the relaxed problem is that, by allowing the velocity
vector x(t) to take on any value in the convex hull of V(x,t), the

existence of an optimal relaxed control and a corresponding relaxed

trajectory is assured. In such cases, it is known that (Warga @2 ],




Gamkrelitze [17]) under appropriate assumptions, solutions of the

relaxed problem can be uniformly approximated by solutions of the

original problem. It is also known (for example, Berkovitz [ 3]) that
such approximations can be realized by "chattering" controls U
where uch(t) Jjumps rapidly back and forth among various points of 0.
We present a proposition which states conditions under which relaxed

solutions can be uniformly approximated by ordinary solutions.

Proposition 3.1 [ 3 ]. Consider a control system defined on T = [a,b],

x = f(x,u,t), where f is continuous in E x IE" xIE Iet O be a

control constraint set. OSuppose that @ is a relaxed trajectory sat-
isfying
o(t) ¢ co £(P(t),0,t), a.e. on T, (3.3)

where co Edenotes the convex hull of a set E. Assume there exists an

integrable function | defined on T such that

f.:f(xﬂl,t) 5 u(t), (BJ‘)

1

and

”f(xyu,t) = f(y,u’t)”n =< L‘-(t>”x - Y!!n (3-5)

for all u ¢ 0, t ¢ T. Then for any € > 0, there exists an ordinary

trajectory V satisfying
¥(t) = £lw¥(t),ult),t), (3.6)
corresponding to an ordinary control wu(t) ¢ Q a.e. on T such that

) - ww)y <e. | (3.7)

3¢

P g ———

——— .y




e

s o 4

~

Returning to our problem, 2 given by (2.4) is compact if 0,
i=1,2,...,N are compact but never convex. Hence, in general, we
may only assume the existence of relaxed solutions for the correspond-
ing relaxed problem and we may have to adopt a chattering control as
an approximation to an optimal control.

We conclude this chapter by presenting the following example.
There exists no optimal control for this example but the value of the
cost can be made as close to its lower bound as desired by chattering
controls. We note that if the example is formulated as a two-stage

*x X
problem, then there exists an optimal control pair (u ,tl). This is

also demonstrated in the example.

Examgle, Consider a multi-stage optimal control problem on T = [0,1]

with the system equation and terminal conditions given by

X = \u, (3.8)
x(0) = 0, x(1) free, (3.9)
and with a cost functional
v [} Vv, o 2
J(u,v) = I [—-?!‘- {xz + (u-217})«+ —g— (2" ¢« [a +'1) I']dt..
0 )
(3.10)
We assume that nl = 02 & (-2,2]. The augmented velocity set V(x,t)

and the set V+(x,t) are shown in Fig. 3.2. Obviously neither set is
convex. On the other hand, this example satisfies all the conditions

of Proposition 3.1. Therefore the optimal control may not exist but

the optimal relaxed control may exist. In that case the optimal




e s

relaxed trajectory can be uniformly approximated by a trajectory
corresponding to some chattering control. In fact, we can find a
sequence of controls which do not converge to any funetions in the
usual sense but the sequence of the corresponding costs converges to
the obvious lower limit of J(u,v), namely, zero.

Note that J(u,v) can be zero only when (1) x(t) = 0, u(t) = 1,
vl(t) =1 and v2(t) =0, or (2) x(t) =0, u(t) = -1, vl(t) =0 and

1. But from (3.€), this cannot be realized. Instead, we con-

0

v,(t)

sider the following sequence of controls (uk,vk):

1 on [21/25, (2141)/2] i
u(t) = 2 TS R
-1 on [(2i+l)/z", 2(1+1)/2"]

{3.11)

[l,O]T when uk(t) 1

t) = . (3.12)
[O,l]T when uk(t) -1

These controls are shown in Fig. 3.3 together with their corresponding

trajectories. Obviously these controls satisfy the control constraints.

From Fig. 3.3, it is clear that

1/2K
T,V = 2 $5/0 &t = (9 x 7ML, (3.13)
0
Hence J(uk,vk) -0 as k - ®,  But clearly as k — @, (uk,vk) has

no limit in the usual sense. Thus, despite the fact that there is no
optimal control, J(u,v) can be made as close to its lower limit zero
as desired by letting the control "chatter" rapidly enough.

Now, suppose that this example was formulated as a two-stage

problem rather than a multi-stage problem. In other words, we assume




L4
that the cost is given as
L
3 1 & 2 . ] 2 2
J(u,t,) = J‘ Z2{x+ (-1t + I = (x°+ (u +1)%)at
1 2 2
0] t
1
(3.14)
v

Then the Hamiltonians Hl and H2 are defined by

Hl(x’p’u) = % {x2 + (u - 1)2} + pu
* . (3.15)

1}

2
HQ(X,P,\I) = % {x2 + (u + 1) j + pu

The optimal controls for each stage are

»
max H_(x,p,u) 3u (t) = p (£) +1
u 2 (3.16)
* *
max H2(x9psu) =2u (t) =P (t) -1
. u
Substituting (3.16) into (3.15) leads to
H=-2@2_p°)+p"
oA
# 9 B . (3.17)
Hpe =8  sia
Now, the canonical equations for each stage are
¥ Lyl 0 (XL
at '‘p*! = a0 'p* 0
TR SR T 1 Gl
55 U = 19 g1 B + 1)
& This gives
* 3
[x:(t)] : r(p0+1) sinh t
P (t) (pg+L) cosh t
- ’ (3.19)
. [xi(t)] & x:, cosh(t-1) - sinh(t-1)
P (t) x* sinh(t-1) - cosh(t-1) + 1
i




o sctistianci S 3

* * * *
where P, & p (0) and Xe & (1), and we have used x*(O) =0 and

* *
p (1) = 0. Using the transversality condition Hzl(tl‘) = H;‘(t;+),

we have,
* *
P (ty) = 0. (3.20)
* * *
From (3.19) and (3.20), t X, and py can be computed as
. /
tl 1/3 1
x:, = |-tanh 1/3 , or [tanh 1 . (3.21)
p; (cosh 1/3)'1 - % i & Y

These two extremal cases are shown in Fig. 3.4. The corresponding cost
values are respectively 0.02 and 0.12. Thus, an optimal control pair i

* »*
(u ,tl) is given by
t) = 1/3, (3.22)
g (cosht)/(cosh1/3), 0<t<1/3

u (t) = AR 1
~(cosh(t-2/3)/(cosh1/3), 1/3 <t <1 it

= .
We note that u (t) satisfies the control constraint. The correspond-

* *
ing trajectories x (t) and p (t) are

T e e vy e g ———

P inht 1/3), 0 <t «<1/3

I Y(cosn1/3) - e
-(sinh(t-3/2))/(cosh1/3), 1/3 < t <1

A w (8) =iy 0O< t<1/3

p(t)=1} , (3.25)
u (t) + 1, 1/3<t<1

This concludes the example.

b e e

o
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(x2+9)/2

/ / /]

/ [ (x2+1)/2
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77
/ v(x,t)

Fig. 3.2,

Sets V(x,t) ama V*(x,t)
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CHAPTER IV

FIXED k~-STAGE OPTIMAL CONIROL PROBLEM

In this chapter, we give a necessary condition for an optimal
control problem with a cost assuming k different forms on k fixed

stages, the control being kept constant on each stage.

4.1, Formulation of Fixed k-stage Optimal Comtrol Problem
As will be discussed in Chapter V, in the plasma heating prob~

lem, it is desired to find an optimal piecewise constant neutral in-
jection heating program I° such that, (1) I*(t) is kept constant on
each given subinterval, and (2) I* minimizes the given cost func-
tional which may assume different forms on different subintervals.

This motivates the fixed k-stage optimal control problem which will be
discussed in this chapter.

First we consider a system

x = f(x,u), (1.1)

givenon T = [to,tf], where f 1is contimously differentiable in
IEn X mm With the application to the plasma heating problem in mind,

we consider the following terminal conditions.
x(to) = X, (1.2)
n(x(ty)) < 0, (1.3)

where Xy is given and h is a continuously differentiable function

of x(tf). Let {Qi,Li(-,-)}, i=1,2,...,k be k given pairs of




»

control constraimt sets and integrands of the cost. We assume that
Qi i ]Em are nonempty convex compact sets and the Li are con-
tinuously differentiable in E" x]Em. Then the fixed k-stage cost

is defined as

x b
o) =T j I, (x(t) u(t))at (1.%)
i=l “t
i-1
where ti, i=1,2,...,k=1 are given switching times and tk = tf.

Definition 1.1. A control u is said to be admissible if

1. there exists a corresponding solution of (1.l) which sat-
isfies the terminal conditions (1.2) and (1.3),

2. u(t) is constant amd u(t) =u

il

g € Qi on each [ti-l’ti)’

W € G on [y tel. l

1}

i =l;2,nqo,k-l’ alﬁ u(t)

Now the fixed k-stage optimal control problem is stated as

follows:

Problem (F): Given system (1.1), terminal conditions (1.2) and (1.3)
and k pairs of constraint sets amd integrands of the cost functional
{ﬂi,Li}, i=1,2,...,k, find an admissible piecewise constant control
* *

u  which minimizes the cost (1.4), i.e., J(u ) < J(u) for any

admissible u. "

Without loss of generality, we consider the case u(t)e E only.

Also we assume that the constraint sets are compact intervals, i.e.,

ni = [vi,wi], w1585 sk (1.5)

.




where =-» < vy < wi <o, j=1,2,...,k. The results obtained in the
following sections can be easily extended to the case with m-dimen-

sional controls.

4.2. Reformulation as Parameter Optimization Problem

For the fixed k-stage optimal control problem, it is required
that the comtrol function is constanmt on each fixed subinterval.
Since there are k fixed subintervals, the control function can be

written as

k-1
u(t) = 2 u, X

(2.1
1 L T8.%) :

4 ukx[tk-l’tk],
where XE is the characteristic function of a set E. By considering
(2.1) as amap F from EX to the class of conmtrol functions under
consideration, we canidentify the control functions with vectorsin 1]5!k 5
Therefore we can formulate the fixed k-stage optimal control problem
as a parameter optimization problem in ZIE'k

Let u denote the parameter vector [ul,ue,...,uk]T ¢ E'. Then

the constraint on the control function

‘ uieﬂi= [Vi,wi] on [ti‘l’ti), i=l,2,-.-,k“l,

u(t) = (2.2)
(ukeig(= [vk,wk] on [tk_l,tf] 5
is equivalent to
gi(g_) e (ui-vi)(ui-wi) €0, L=l,2,u.43k: (2.3)

Next, the final condition (1.3) can be transcribed as a con-

straint on the parameter vector u by considering a map from u to
x(ty) such that

L

"
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x (w) < x(t,) (2.4)

where x(t is the final point of the trajectory x corresponding

£)
to the control function JF(u). Substituting (2.4) into(1.3) yields

h(xk(y)s 0. (2.5)

Now the fixed k-stage optimal control problem is reformulated as

a parameter optimization problem.
Problem (P): Minimize the cost J(u) given by

%
S

Ju) = 2 f Li(x(t),ui)d'b, (2.6)
i=l "ty 5

with respect to u = [ul,uz,...,uk] subject to (2.3) and (2.5), where
x(t) 4is a solution trajectory of (1.l) with (1.2) and a control

function 3(w). ||

Thus we have a standard nonlinear programming problem for which

the standard results of nonlinear programming are readily applicable.

4.3. Necessary Condition for Optimal Parameter Vector

In this section, we present a set of necessary conditions for an
optimal parameter vector by applying the Kuhn-Tucker (K-T) condition
to the reformulated parameter optimization problem. The K-T condi-
tion in general form is given in Appendix D.

First we define the Lagrangians J(u) and M(u) as

J(w) = AI(w + ph(x, (), (3.1)
k
MW 2w + T e (3.2)
Lo




where A, i=0,1,...,k and u are scalar multipliers. Let u

be an optimal parameter vector. Then the K-~T condition states that

i *
at u=u

* ~_ % k *
yMu) = v () + 1§1 AV 8y (n) = 0. (3.3)

As we have discussed in Chapter I, no assumption will be introduced in
deriving the gradients in (3.3).

The following theorem gives necessary conditions in integral
form. We note that the gradient V!M can be written in a compact
form by introducing the adjoint vector p(t) and the Hamiltonians

Hi(x(t),p(t),ui’ko)’ i = l,2,o-.,kc

* * * * ]
Thearem 3.1. Suppose a vector u = [ul,ua,...,u.k] is optimal,

then it is necessary that

slt) = - faH, /ax (x"(£),0"(8),u; 201"

on (ti-l’ti)’ i= 112,~--:k:

i p | (3.4)
P (t;°) =p (£;+), 1=1,2,...k"1,

P (tg) == (3h(x (a))/ax )" !

*
where x (t) satisfies

%"(t) = (o /op(x"(£),07 () u AT

om (Bt )y 1m 18 ely
ek , (3.5)

*
X*(ti-) = X (ti+), 1 = l,2,o.-,k-l’

x'(tg) = x5, h(x (t,)) < 0, J

50




| (" (8),07(6) 05 2) Saghy (7 (6) u]) + 2" (6) T2 () u).

(3.6)
. 87 Ve ¢
2. there exist scalar nompesitive multipliers 7\: <0,
i=1,2,...,k such that
* *
7\181(5 Y=0, 1=1,2,...,k; {3.7)
~t —

where u. =
o 18

°t

2 * * * % %, ¥ -
I‘t aHQ/aue(X (t),p (t),u2,7\0)dt+27\2(u2-u2)

tk * * ; * N D
[ aH /aw (x7(6),p 7 (£) 0y N )dt + 2N (- w )

LY

1 * * * ¥ *, ¥ -
[ aH /au) (x (£),0 (£),uy,2)dt+ 2N (u) -u;)
0

t

1

(3.8)

(vi+w)/2,  1=1,2,...k. I

For the proof of this theorem, we refer to Appendix F.

’

! 3.

}

)
Remarks !
(R.1)

: A

(R.2)

»

F
*

u.* in (3.4) is a nonpositive multiplier corresponding to

* *
the condition h(x (u)) < 0. Moreover, | <0 if

n(x (u")) = 0 and W=0 if n(x(a)) <o.

*
The multiplier 7\0 in (3.6) is nompositive. We can assume

*
7\0 < 0 if the first-order constraint qualification is

satisfied (various types of constraint qualifications are

discussed in Mangasarian [31] ). But when the constraint is

of the implicit type such as (2.5), it is generally imposs-

ible to check the qualification a priori. "




The following theorem gives a more explicit characterization of

g*. It is said that the constraint g, is active if g,(u) <0 1is

satisfied by equality.

» * ¥ * T
Theorem 3.2. Let u = [u,,u,,...,u ]° be optimal. Suppose
j'ti (BH:/aui)(t)dt # 0, then g; 1is active and

ti 4

t

v, 1t [ (3H[/au,)(t)at > 0
t

1-1 1

where (aH:/aui)(t) - (aHi/aui)(x*(t):P*(t):u:r ;)~ I |

Remark: When 7\; =0, it is obvious that

™4

Yt

BH;/aui(t)dt = 0. (3.10)
i-1

For this case uI may take any value in [vi ,wi] and the equality b

(3.10) must be solved to find uI. "

Proof of Theorem 3.2. Suppose

t
J1 Hi ()t > o, (3.12)
i

e

Then in order for (3.8) to be satisfied, we must have

e [ ———

A Cuy - w,) <o. (3.12)

* * *
This implies 7\1 # 0 and, from the nompositiveness of N, 7\1 < 0.

Now, for 7\: < 0, the condition (3.7) states that g, 1is active, i.e.

* * * *
gi(g) = 0. Hence either u, =v, or u, = w, . But again for 7\i<0,

i




:vh: i
1
‘ 1]
* — * (.‘
(3.12) can be satisfied only if u, - u, > 0. Therefore u, = Ww,.
0 i i i i
The other case can be shown similarly. "
In general, some iterative procedure must be employed for the
*
" computation of u  since the conditions in the above theorems in-

*
volve u . For the computational aspects of the nonlinear programming, 4

we refer to standard texts (for example, Canon, Cullum and Polak [ 6]).




i CHAPTER V

PIASMA HEATING BY NEUTRAL INJECTION

A problem of minimum input energy plasma heating by neutral in-
jection is presented in this chapter. The problem is formulated as a
two-stage optimal control problem and is solved utilizing the results
] of Chapter II. An optimal piecewise constant neutral injection pro-

gram is then derived using the techniques discussed in Chapter IV. |

5.1. Minimum Input Energy Plasma Heating Problem

In a recent report [ 9], the problem of toroidal plasma heating
by neutral injection was studied using a spatially-averaged two-
temperature model of the plasma. It was shown that the problem of
minimizing the total input energy while achieving a desired ion tem-

perature gives rise to a two-stage optimal control problem. We will f

give an explicit formulation of this problem in this section.
When the electron and ion temperatures Te and Ti are of the )
order of KeV, we have the following equations for the average

energy transport associated with the electrons and ions.

3 e Q o aQ e ;
BEE " "7 " "be = "en = "p oy (1.1a) :
!

ar !
Tt = Set - Spy - Sex N (1.10) !

where S are respectively the energy

S S S S
g el byt TR Tex N

transport terms corresponding to Joule heating, electron-ion energy
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exchange, diffusion loss of species j (j = e and 1 for electrons
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and ions), line radiation 1loss, excitation and power-transfer fram

neutral beam to species j. In explicit form, (1.1) can be expressed

as
;:E = AII§T 3/2_A21pB Z-A (T -T )T'B/E-Au+A5X1, (1.2a)
;;i = A,(T-Ty)T, 3/2-SD1(T1,IP)-BhT1+B5X2, (1.2n)
g_’t‘_l - 22w - (01332 oV 2x (1.2¢)
;;3 - 573 ?(&1) - (clT;3/2 + CQE'3/2)X2, (1.24)

where Ip is the toroidal plasma current, E and I are the average
particle kinetic-energy and current of the injected neutral beam, and
X1 and X? are normalized injected power transferred to electrons
and ions respectively. The average particle kinetic-energy E is
assumed to be fixed. The exponents @ and £ depend on the electron
diffusion regime. Here we set @ = 1/2 and B = 0 which correspond
to the collisional regime. The ion diffusion in the three regines is

approximated by the function S defined by

Di
/2. -8 5/2_-1 1/2_-2
8p4(Ty»I ) = Int{B, T Ip sB TS 1 B3Ti I #s (1.3)
where Int{al,aa,aa} denotes the intermediate value of the three
quantities a,s i= 1,2,3. The coefficients Aj’Bk and C£ are

given in Appendix F. For a detailed discussion of this two-tempera-
ture model, we refer to [ 9].

As was discussed in Chapter I, we consider a heating program

beginning with an initial Joule heating period followed by cambined

S ———
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neutral injection and Joule heating.
Let the heating interval [O,tf] be fixed. For a neutral in-
jection current I(t) defined on [tl,tf] with t, e [O,tf], the

total input energy into the plasma is given by
t t

; uls
: J(I,t R
1 Jo

e
AlliT;3/2(t)dt + | REI(t)at, (1.4)
t

Al
where the integrands of the first and second integrals correspond to

Joule heating and neutral injection heating respectively, and the con- |

stant R 1is given in Appendix F.

Minimum Energy Plasma Heating Problem: Given the two-temperature |
model of the plasma described by (1.2): a finite heating time interval

T4 [0,t.): initial conditions
(T4(0),T,(0),%,(0),X5(0)) = (T,T;,0,0) 3 (1.5)

a desired ion temperature Tid > Tio;

tion current I(t) of the form b

and a constraint on the injec-

‘I(t) s 0 on [0,t,), l ‘
I(t) ¢ 3 = [Imin’Imax) a.e. on [tl,tf], r
where TeO > Oy TiO >0, Imin >0 and Imax > Imin are specified

* ¥
finite constants, find a neutral injection program (I ,tl) such that

>t and the total input energy J(I,tl) given by (1.4) is

id
minimized. "




e el

Note that in this problem formulation, E is held constant. In
general, both E and T can be considered as controls.
We rewrite the total cost J in the following form.

Fl t

te
1 -3/2 a -3/2 .
(1,8 = i AllgTe (t)at + JtI{Allswe (t) + RLI(t)}d?. .
1.

Thus, the minimum input energy plasma heating problem is formulated
as a two-stage optimal control problem for which the results of

Chapter II are readily applicable.

5.2. Existence of an Optimal Heating Program

We shall show that the plasma heating problem satisfies all the
* *
conditions for the existence of an optimal control pair (u ,tl)

given in Theorems II.2.1 and II.2.2 .

let x denote the system state vector [Te,Ti,Xl,Xg]T <E.

Let the right hand side of the system equation (1.2a)-(1.2b) be de-
T
noted by f(x,I) = [fe,fi,fl,fe] :

The initial set X and the constraint sets Q and 92 are

0 1

given by

I TR e D - |

T
0,0] y Sz o= {O}~ Q min® “max

Xo = [TeqsTi00

Hence the campactness condition (1) in Theorem II.2.1 is satisfied.
The convexity condition (5) in the same theorem is also satisfied

-3/
since the augmented velocity vectors (AlIiTGB‘Q,f(x,I)) and

(AlIiT;B/?+REI,f(x,I)) are affine in the control I, ¢, is a point

il

and 92 is convex. Note that Theorem II.2.1 is still valid when the

set of augmented velocity vectors is reduced to a point.

adirs b




We note that the two-temperature model (1.2) of the plasma is

i
defined only in a cone C ¢ IE given by

iy ;
C = {[Te,Ti,Xl,Xe] (o) e 're,o <T,0 < xl,o < x2}. (2.2)

Iet £ be a nonempty compact subset of €. Then f(x,I) and the
integrands of the cost functional (1.4) are uniformly continuous in
& X {nl ] 92] X T. This shows that the continuity and boundedness con-
dition (3) of Theorem II.2.1 is satisfied on 8 x {Ql U 02} x T for
any campact set 8 c C.

Now the measurability of the control I(-) and the boundedness
of f(x,I) implies that F(x,t) & f(x,I(t)) satisfies the
Caratheodory hypothesis [ 7). Furthermore, F(x,t) satisfies the

Lipschitz condition
[F(x,t) - F(y,t)), <Mgix - vl (2.3)

for any x and y in any compact set ¥ < C and any fixed t € T,
because the Jacobian matrix (dF(x,t)/dx) exists for almost all x ¢ C
for fixed t € T, and each element (BF/bx)iJ., 1,0 = 1,2,3, 1 Asiuni-

formly bounded in any 8 < &, i.e., for any x € 8 and t € T,

|(aF(x,t)/ax)i.| <M., <oy 1,3 = 1,2,3,4 (2.%)

J 1J

whenever (aF(x,t)/ax)i'j exists. Thus we can apply Theorem 2.2 in
Chapter 2 of [ 7] to establish the existence of a unique solution of
(1.2) passing through any point of & with any control satisfying

the control constraint. Consequently, condition (2) of Theorem II.2.1

of the existence of a unique solution is satisfied.

e L ———




Next we shall prove the following theorem, which shows that

condition (Y4) of Theorem II.2.1 is satisfied.

Theorem 2.1. There exists a compact set § < C such that (1) the

given initial point x . = [TeO’TiO’O’O]T is in S, and (2) for any

6]
control I which satisfies the control constraint (1.6), the corre-

sponding trajectory does not escape from S. ”

For the proof of this theorem, we need the following result.
Lemma 2.1. Consider a function g defined on (0O,») such that

g 1/
glr) = AlIgr 3/2 _ A2r1/2 ¥ Af‘l 2-Ah S (2.5)

where € > 0 1is a constant. Assirme that A§ - 12AIAQI§ a0 ihen
g(r) 1is strictly monotone decreasing and g(r) = O has a unique

solution in (0,x). "

Proof: Since g(r) is continuous in (0,) and

no
O
ozt

1lim g(r) = &, 1im g(r) = -0, (
r =0+ r =

there exists at least one solution for g(r) = 0. On the other hand,

dg/or = -r'5/2(A2r2 N 3AII§)/2. (2.7)

3

Since the discriminant D of the parenthesized quadratic form is

negative by assumption, we have

(3g/ar) < 0, v r > 0. (2.8)

e e ——
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Thus g(r) is strictly monotone decreasing and there exists a unique

solution for g(r) = 0 in (0,x). ”

Note that for the actual parameter values (see Appendix G),
D ® -9. Hence the condition in Iemma 2.1 is satisfieqd.

Now we proceed to prove Theorem 2.1.

Proof of Theorem 2.1: ILet Tec be the unique solution of g(r) = O.

let T . = min{Tec,TeO}. Hereafter, we assume that Bl

emin”’
For any T ¢ [Imln’Ima.x] or I=0, we have
~afotry
fllx 0= Te3/ EI > 0. (2.9)
1
Let xlmax be given by
81432 5 /(e (2.10)
)L.Lma.x emin Ima.x 2E :
Then for any I satisfying the constraint,
- -1 -3/251 0 T'3/2 +C E‘3/9)x
l"xlmax 1max
-3/2 =3/2¢ (p=3/ -3/2
= Tenin Flpax - Golo {2+ emirelEIma.x)/(CQE )}
=3/0
= <% <o, (2.11)
Next we consider fa. For any I ¢ [Imin’Im&x] or" I =0,
-3/2
f‘elx 0T BT 2 0. (2.12)

Define xana.x as

S —

- g -

D L —
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Then again for any I

folx_x e

€ [T 49T p] o I=0,

min

g3/ 2(g1) - (ClT;3/2 + 0213‘3/?»(&“&x

-3/2 -3/2
<E (EIma_x) - CE (1 + EImu/Ce)

= -C?E'B/? <0, (2.14)
Furthermore, for X, € [O’Xanax]’
-1/2
filTi=O = AT + BX, > 0. (2.15)
We also have for X e 10, Xana.x]
£, a2 _gg3/2p g (r )+BT, o +B
T, =0, T 73 I - Timax ™ "Di imax’Ip imax 5x2
i imax
-3/2 1
< AaTemin - BT, + 135)(anax =0, (2.16)
where T, is given by
o -1/2
Timax = (A3Temtn * Bo¥onay) /By (2.17)
Now we compute f lT T . From Lemma 2.1,
e “emin
" 2 -3/2 1/2 p-1/2
feI’I.‘ =T = (Ale+A3Ti)Tmnin A2Tem1n A3 emin"Ah*AS 1
e “emin
AIaI‘ -3/2 p ql/2 4 9-l/2 4 S 50, (2.18)
emin” 2em1n 3 emin” 4 = y #
for any T, € [O’Tima.x] and Xl € [O’xlma.x] since T_. <T, .  and
g(Temin) > g(Tec)- Finally, let Temax > 0 be a solution of
-3 2, ol/2 g
(AT +A3Ti )T AT x5 1pax = O (2.19)




—
Then for any '1‘i € [O’Thnax] and X1 € [O’leax]’
Tlp g = (A11;2>+A3T1)Tgﬁ‘Aeszix'%T;ﬁ‘Ah*sxl
e emax
< (A1I§+A3TM)T;3§-A2T£ ALK
= -A, < 0. (2.20)

Thus we have established that there exists no trajectory which es-

capes from the region

g8 ¥
2 i[Te’Ti’xl’xP] ? Temin - Te : Temax’ e Ti b Timax’
02X <o 040 <X, =X, ). ' (2.2)
T
The given initial point X, = [TeO’TiO’O’O] is in 8 since

Consequently, any trajectory initiating

T < P and O < T

emin = Te0 10°
from xO at time t = 0 remains in 8. ”

Theorem 2.1 establishes the last remaining condition (4) of
Theorem II.2.1. Thus, we only have to show condition (6) in Theorem
IT.2.2 in order to conclude the existence of an optimal heating pro-
gram.

Now we make the following two assumptions:

1. Ti(tf;Imax) > Ty g0 where Ti(tf;Imax) is the final ion

temperature with I(t) = Imax for all t ¢ [O,tf];

2. Ty4> Ti.

corresponding to Joule heating only.

where Ti is the equilibrium ion temperature

The first assumption is essential in order for our problem to be

meaningful. Otherwise the desired temperature Tid can never be

oe

e e, T
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achieved. The second assumption refers to the actual requirement that
Tid is near the ignition temperature. It is implied in this assump-
tion that neutral injection must be introduced over same positive
time duration so that the ion temperature can reach Tid' In (9]
it was shown that the time-optimal heating program which steers the
T =

system fram X, to the target set {x = [Te,Ti,Xl,XE] : Ty 2> Tid}
in the smallest amount of time is given by I(t) = Imax for all t.
This implies that there exists a critical switching time tlc for
which there exists only one trajectory with I(t) = Imax on [tlc‘tf]
such that Ti(tf) = Tygo and there is no trajectory with Ti(tf) > T4
for any switching time t, > t. . In other words, the set AN of

1 1lc 3
tl-admissible controls is nonempty for tl € [O,tlc]. This shows
that condition (6) in Theorem II.2.2 is satisfied.

* »*
Thus the existence of an optimal heating program (I ,tl) is

established.

5.3. Characterization of Optimal Heating Program

In this section, we apply Theorem L.l of Chapter II to the plasma

heating problem and derive necessary conditions for an optimal heating

program.

First we form the Hamiltonians Hi’ 1 = L2y

i}

2 -3/2
Hl(x,p,I) -AleTe +p1fe+p2fi+p3fl+phf2

-3/2,  .-1/2
(pBTe 2h+phE )I + M, E

63




. - T
H(pr):-(AIET-3/2+REI)+pf+pf+ fo+p,f, =S I +M
Py R 1pe 1"e™P2*1'P3*"PYt0 = By ’
(3.2)
where p = [pl,pz,p ,ph]T is the adjoint vector and S, (t) and M
3 W
are defined by
A -3/2 /e
S(t) = Epft) T2 °(¢) + BT 7p (t) - RE, (3.3)
A w3fe o -3 -3/2 _
M = plfe+p2f1+(p3X1+puX2)(ClTe + B e Allg'l‘e o £30) ;
Since the constraint sets Sll and n2 are given by ‘ 1
Ql = {0}9 32 = [Imin’Imax]’ (3-5)
the maximization of H1 and H2 can be performed as
* % e * A
max Hl(x P sI) = H1<x P ,O) =M (t)s (3-6)
IeQ
1
| 2
* * * oo
R ‘ sw(t)lmin + M (EY, 1f Sw(t) \ol 3
max H. (x ,p ,I) = i !
Ten, © | s%(t) +M(t), if S.(t) >0 | (3.7) "
2 Sl pax ? " : ; |
|
B dyh * |
The transversality condition Hl’t; = Hglt"{ gives . i
* * * * * *
o ‘Sw(tl‘“)Imin +MO(ty4), A Su(t4) < ol
M (tl") = IS* t* ) * ¥ ) ®O» $: (3.8) %
(B + M (6,4), 4f S(t.4) >0 ' 3
i
Since M(t) and Sw(t) are continuous, (3.£) yields .
* *
Sw(tl) L 0' (3-9)
This is the switching condition.
E

6l

| ;



When (3.9) is satisfied on some positive time interval [ta,tb],
the maximum principle fails to provide any information about I*(t)
on this interval. I*(t) and the corresponding trajectory x*(t) on
such an interval [ta,tb] are commonly referred to as a "singular"
control and singular arc respectively. Due to the nonlinearity of the %
system equations (1.2a)-(1.2d4), the nonexistence of singular controls |

cannot be readily established.

By assuming the nonexistence of singular controls, the fore-

going results can be summarized by the following theorem.

* *
Theorem 3.1. Suppose (I ,tl) is an optimal heating program, then
it is necessary that

*
1. there exists an adjoint vector p such that

* T ¥
- ‘-(aﬂl/ax) , on [to,tl)l

== * T * ’ (3-10)
[-(ane/ax) & “on [tl’tf]‘
* * T
p (t;) = [0,p,(t.),0,017, (3.11)
* ¥ * *
P (%,-) = p (t;4), (3.12)
* |4
where pe(tf) =0 Af Ti(tf) > Tyq and is unspecified if i
Y(t) =T, . i
Sgihpl & Tygh |
* * t
2 I(t) =0, on [to,tl) and A
(1 if S(t) <0 l
* in’ . e S *
I(t) i % , on [tl,tf]: (3.13)
P 4 &s) >0

3. the following transversality condition is satisfied,

* *
Sw(tl) = 0, (3.14)




The explicit form of (3.10) is given in Appendix G. "

Proof: Conditions (3.10) and (3.12) follow directly from condition
(4.23) of Theorem II.4.l. Condition (3.11) together with the char-
*
acterization of pe(tf) can also be derived from this condition.
*
1a’ then the final condition Ti(tf) 2 Tyq can

be disregarded since it is not active. In other words, our problem

S *t) "
uppose Ti( 8

*
can be considered as a free end-point problem. Therefore p (tf) =

* *
and this implies pe(tf) = 0. On the other hand, if Ti(tf) =T

id’
then the tangent plane ﬂ; to X, at x*(tf) is the hyperplane
* it
nf = {x H (x,(O,l,0,0) ) = Tid}' (3-15)

* * *
Hence the condition p (tf) l Hf can be satisfied by any pe(tf).

The other conditions were already derived. "

Thus, the optimal plasma heating program is of "bang-bang" type
such that the neutral injection current takes on either the maximum
or minimum value.

Assuming the existence of a unique optimal heating program, we
can express the necessary conditions in Theorem 3.1 as a three-point

boundary value problem (ThPBVP).

Lemma 3.1. Suppose there exists a unique optimal heating program
* *
(I ,tl). Then x and p* are solutions to the following three-

point boundary value problem:

66
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X > 5 */a T
sx (9H,/3p) l 4 oon [to,t;), (4.4}
l ﬁ* = —(@H;/ax)T ‘

(% = (aHZ/Bp)T l ek
it o) ¢ (3.1

with three-point boundary conditions given by

"% SR T
x (t0> .- [Teo!Tiooooo] .
* b * % T
*, * B * t* ) *(t* ) o t* ) *
X (tl‘ = X ( l+ s p l' > p ( l+ s
S* *
~ w(tl) =
if Th(t,) i Tt
where 7 =0 i TO e > Tid and 1 1is unspecified if Ti(tf =
T,q+ The optimal injection current I*(t) satisfies the maximizing

condition (3.13). “

Thus, the solution of the original heating problem can be obtained
by solving this ThPVP together with the maximization condition (3.13)

*
of the Hamiltonian H, on the second interval (tl.tf].

2

5.4, Piecewise Constant Neutral Injection

In actual experiments, it 1is difficult to realize a continuous
variation of the neutral beam current with time. Moreover, it is
preferred that the injection current has jumps at prescribed switching
times rather than at arbitrary time instants. This leads to the con-
sideration of neutral injection programs such that the beam current

is kept constant on each prescribed subinterval of the heating time

interval.

-l




e

Let ti’ i=1,2,...,k-1 be the given switching times such that
to SR t2 e e tk-l < tf. We consider a cost functional given
by

t
J(I) =

0 M

e
-3/2
- Jt [AlIsTe(t) + REI(t))dt.

(k.1)
i-1

In this section, it is assumed that the constraint on the magnitude
of the beam current I(t)

is given by O

min —< ( ) max ;
inberva.l, i.e.,

I(t) = I, € 0,1 .1, on [ti_l,ti), 1w 2,2,00k (4.2)
By assuming %nin = 0, the subintervals with no injection are simply
indicated by I(t) =

We formulate the problem of minimizing (L4.1) with respect to I(t)

as a parameter optimization problem as discussed in Chapter IV. ILet I
be the parameter vector [Il,I Shoreretay ]T

2

The constraint (4.2) is
replaced by

A %
gi(l) = Ii(I - ax) <0y 3= UgByv. . 4. (4.3)
The requirement that the trajectories reach the target set
{(Te,Ti, 1 2) t Ty > Tid} at the final time t. can be expressed as

h(x, (1))

n

Tyg - (a,x(tp)) <0 (4.4)

where o = [O,I,O,O]T,

(*y*) 1is the inner product on IE
is the end point of the

and x(tf)

trajectory x corresponding to the control

A
“t)=wl)=f%Ii S Ak ok N e

(4.5)




Now the plasma heating problem is reformulated as follows:

Problem: Minimize the cost (4.1) with respect to I subject to

(4.3) and (4.4). ||

We now utilize the results in Chapter IV in deriving necessary
conditions for an optimal lf. In Chapter IV the right hand side of
the system equation was assumed to be continuously differentiasble.
But f(x,I) does not satisfy this condition since sDi(Ti) is not

differentiable in T, at two points. We need to approximate SDi

i
by same continuously differentiable function of Ti' One possible
form of approximation may be a polynomial of Ti' Henceforth we

assume that S is replaced by its continuously differentiable

Di
approximation.
The Hamiltonians H, on subintervals [ti_l,ti), ;T TR e SRR

have identical forms
H, (x(t),0(t),I5,4,) = §(8)I, +M(t), 1= 1,2,...,k, (4.6)

where §k(t) and M are given by

-1/2

5a(0) = Ep(0Ins3/2(4) + 5V (1) - g, (8.7)

M= plfe + Pty + (p3X1 + phxz)aa;;3/2 + CEE'3/2)

* *o“ﬁi‘"?/e- (4.8)

Then for 1 = 1,2,...,k

e ot o A L NI P




does not depend on Ii explicitly.

* * _* *.T |
Theorem 4.1. Suppose I = [Il’IQ""’Ik] is optimal, then

*
3 There exists an adjoint vector p which satisfies

* a—* * a?l'*
(ﬁ (t) = - - (t) I (t) - - (t),l

4.10)
* * T (
P (tf) o [O"“ ’090] s s
* *
where u <0 (u =0 if T;(tf) > Tid)’ and I*(t) =
G *
HI); &
e RO,
2. case 1) |  F(t)at = o. (4.11)
s
i-1
Then I; is given as a solution of (k4.11).
t,
S w3
Case ii) j Sy(t)at # 0, then
t,
i-1
ti -
‘ 0 , when j;i § Sw(t)dt <0

3. > (k.12)
i ti o
II , when [ F(t)at >o.
Y

Proof: The condition (4.10) comes from (IV.3.4) in Theorem IV.3.1l and

»* -
m, &,
321 i E;E 3 * gé- goon [t ob.), 4= 1,200k, (4.13)

Condition (4.11) and (L4.12) follow from (4.9) and Theorem IV.3.2. ”

It is interesting to compare the optimality condition (L4.11) and
(4,12) with (3.13) and (3.14) in Section 5.3. We notice that (4.12)
"approximates" (3.13) in the sense that as Iti-ti_ll -0, the limit

of (4.12) coincides with (3.13). In a similar manner, as 'ti'ti-llqo

e e ey e




the limit of (4.11) coincides with the switching condition (3.14).
In the next chapter, the two-temperature model of the plasma will

be simplified to a single temperature model, for which the optimal

heating program can be characterized in greater detail.




CHAPTER VI
SINGLE-TEMPERATURE MODEL OF PLASMA

In this chapter, the minimum injection energy plasma heating
problem is discussed using the simplified single-temperature model.
The problem of ion temperature stabilization using several forms

of feedback control is also discussed.

6.1. Single-temperature Model of Plasma and Minimun Injection Energy

Heating

In the recent T.F.R. neutral injection experiments, it was ob-
served that, when neutral injection was introduced after the ion and
electron temperatures approached their equilibrium temperatures fi
and -T-e (corresponding to Joule heating only), the electron tempera-
ture did not vary significantly during the neutral injection period.
This may be explained by the fact that the electrons are in a very
high-loss regime when the plasma current Ip is sufficiently large
[81].

In such a case, the electron temperature Te(t) may be approx-
imated by the constamt T, and the two-temperature model (V.1.2)
may be simplified to a single-temperature model having two equations:

one for the ion temperature (Ti) and the other for the injected

power transferred to ions (XQ)' The relevant equations are:




Y.

"”‘”W—‘Wﬂm—‘ -
1
\

T,=¢ - h(Ti;Ip) +c X, = fl(Ti,Xz), I
. 2 (1.1)
with initial conditions at t = 0,
T,(0) = 'T'io, x,(0) = 0, (1.2)
where
W
_ a3/ i«
c, = A3Te ) Co = BS’
-1/2 ==~3/2 -3/2
¢y =E i) ch=ClTe3/ + C,E 3/2, > (1.3)
Sy L ama .
h(Ti,IP) = (A3Te + Bh)Ti + sDi(Ti’Ip)' :

In this chapter, we shall use this model to discuss various problems
concerning the plasma heating process.

First, we consider the following minimum input energy plasma
heating problem which is a reformulation of the problem discussed in
Section 5.1. Throughout this chapter, Imin is assumed to be zero.
Note that we are employing the multi-stage formulation. The aug-
mented control constraint set 8 is given by

B = ([T,v,v,0 £ 10,1,007 or [1,0,1)" am Tea=[o,1 . 1}.
(1.4)

Problem: Given system (1.l) with initial conditions (1.2); a fixed

heating time [O,tf]; and an augmented control constraint set &
* %

(1.4). Find an optimal augmented injection program (I ,v ) such

that (I (t),v (t))ef a.e. on [0,t,] and the imput-energy J(I,v)

given by




t

:
A7) = jo [AllpzTe(t)-3/2 + REI()v,(t) Jat, (1.5)

is minimized while achieving the desired ion temperature Ti a at

e toa RGeSt |

Since we have assumed that Te(t) is constant, the Joule heat-
ing term in (1.5) is constant. Hence for a fixed heating interval
[o,tf], the total energy consumption due to Joule heating is
constant. Thus we may eliminate the Joule heating term from the cost
functional (1.5) and reduce the above problem to a minimum injection
energy problem. Furthermore, since the value ve(t)I(t) is equal to
I(t) a.e. on [O,tf] under the constraint (1.4), we may identify
v2(t)I(t) with I(t). Consequently, our problem can be simplified

to the following standard optimal comtrol problem.

Problem (S): Given system (1.1) with initial conditions (1.2), a
fixed heating time imterval [o,tf] , amd a conmtrol constraint set
o= [0,1_ 1. Find an optimal injection program I" such that

I*(t) € Q a.e. on [O,tf] and the injection energy J(I) given by
tf

J(I) =f REI(t)dt, (1.6)
0

is minimized while achieving the desired ion temperature Tid at

t = tp id.el, Ti(tf) > T4y "

For this formulation, we note that the no-injection stage is
simply represented by I(t) = O since O € @ by the assumption that

Imin o Imin

-0, then O must be modified to
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8 = {{0} U [TyypeTay)) (1.7)

in order to include the no-injection stage. As we have discussed in
Chapter III, a nonconvex constraint set such as ( causes consider-
able difficulty in the analysis of optimal solutions.,

The existence of an optimal injection heating program I* for
problem (S) can be established with the help of a standard existence
theorem presented in Appendix A. 1In fact, if the set of admissible
controls can be shown to be nonempty, then the existence of I* is
guaranteed since all other conditions are satisfied. For this pure
pose, it is sufficient to assume that Ti(tf;Imax) > Tid as we did
in Section 5.2, where Ti(tf;Imax) is the ion temperature at the
final time t. with I(t) = I x forall te [O,tf].

Let T,.(I___) be the equilibrium ion temperature with I(t) =

i "max
P for all t. Henceforth assume that Ti(Imax) > Tid’ which is
obviously required in order to have Ti(tf;%max) 2 Tid' Also assume

that T is strictly greater than the equilibrium ion temperature

id
T& corresponding to Joule heating alone. This assumption implies

that neutral injection must be introduced for same positive time dura-
tion in order to heat the ions to Tid'
In the following section, we discuss the characterization of an

*
optimal injection program I in detail and give a simple algorithm

*
for the computetion of I .
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6.2. Characterization of Optimal Heating Program

We start with the following result.

*
Theorem 2.1. The optimal heating program I (t) for Problem (8) is

given by ;

* 3/2 l
I wh t) > RE
m: s en pg( )

i (2.1)

0 , when p;(t) < REB/2 s /

*
provided that p2 (t) # RE3/2 on any positive time interval, where
]T

sy

*
P, 1s the second camponent of the adjoint vector p = [pl,p2

satisfying i

< b (t) {3n(1} (£):1)/aT, Jp. (t)
PRy =| 3+ |« B M e e N R
Bo(t) - py(8) + ¢Py(t)

*
with dn(T(v):I))/aT; & (3n(1, )/aT )|T (t)+ The values of I (t)
at the times when pz(t) REB/2 are detenmined so as to make I

continuous from the right hand side. "

S ———

Prooft The Hamiltonian H for Problem (S) is given by

H(x,p,I)

i

-RET + p,,(T,,X,) + p,f (X, 1) <

(CBP b RE)I + Pl l T ) o "hpe o (2'3)

r . ——— ay vo—

*
Suppose I is optimal, then from the maximum principle

x X
1. there exists a nontrivial adjoint vector p = [pl,pelT

which satisfiec
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73 3K /3T, (an(T3(£)51.) /2T Jpy (+)

b (t) = s (2-1*)

¥ * *
_OH /ax2 _c2p1(t) + ¢, p,(t)

* * *
P (tf) | the tangent plane Hf to X, at x (tf); (2.5)

* * * * *
2. H(x (t),p (t),I (t))= max H(x (t),p (t),I) a.e. on [O,tf].
Ieq (2.6)
f i
Since X = t[Ti,Xe] LRr= Tid}, (2.5) leads to the condition
pa(tf) = 0. Finally performing the maximization in (2.6) yields (2.1).
* 82 :
Note that when pg(t) = RE”/“, I (t) can take on any value in 0
*
since the Hamiltonian does not depend on I (t). Hence I*(t) can

*
be chosen so as to make I continuous fram the right hand side. "

When pZ(t) = RE3/2 for same positive time interval, the max-
imum principle fails to provide any information about I*(t) on that
interval. I*(t) on such an interval becomes a "singular” control
and some higher order optimality condition must be employed in order
to specify I*(t). However, it will be shown in the next lemma that

no singular interval exists.

* *
Lemma 2.1. p1 is strictly monotone in t and p2 can not be equal

to RE3/2 for any positive time duration. "

* *
Proof: First we show that plO # 0. Suppose Pio = 0, then fram
*
(2.8), p;(t) =0 on T, and hence pe(t) =0 on T. This contra-

*
dicts the fact that p is nonzero. Now from (1.3) and the defini-

tion of SDi(Ti;Ip),

S

e L T ——

i i ades. i L




= 18
G + Blee‘Ti /2, for 0<T, <T

il
3h e -1.3/2 b _
3T (131) = {6 + sBaxeri /B tor B, <Y RN, (2.7}
-0 ¥
G + B3Ip T, /2, for Tio <Ty
-3/2
R 1/2
where G = A3Te + By, Ty = (Bl/(BzIp)) and T,, =
(53/(521p))1/2. Obviously Bh(Ti;Ip)/BTi >G forall T, >0 ex-

*

*
cept at T_j_1 and Ti2‘ Consequently, for Ti Ti(t) such that

* *
ah(Ti(t);Ip)/aTi exists a.e. on T, pl(t) is strictly monotone.
Now suppose that p; is constant on some interval [tl’tel €T,
* *
ty £ t,. Then from Rl pl(t) . chpa(t)/ce = constant since

K3
pa(t) =0 on [tl,te]. This contradicts the strict monotonicity of
*
. |

Thus we have established the nonexistence of a singular inter-

val. In the next lemma, we find the maximum number of roots for

2
pe(t) " RE3/ .
lemma 2.2. The equation

po(t) = RE3/2. (2.8)

can have at most two roots on T = [0,t.]. I

Proof: The solutions to (2.2) on [O,tf] have the forms

t *
p,(t) = p,,expl jb (3n(T)(s):1)/3T;]ds ] ]
g s ’ (2.9)
Pe(t) = J; exp[ch(t - s)}qapl(s)ds

Tt

- ————
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where plO is an unspecified constant. When P10 <0, it follows
fram (2.9) that pl(t) and pe(t) are both negative for all t ¢ T.
Hence (2.8) has no solution. Now, assume that Pio > 0. ILet

t e (O,tf) be a stationary point of p,, 1i.e., §2(€) = 0. Then,

we have from (2.2) and Lemma 2.1,

2,() = -e Py (B) + ¢By(F) = e B, (F) <o. (2.10)

This shows that any stationary point t is a local maximum point of
Py- Since P, does not have a corner which can be a local minimum,
p, can have at most one local maximum. By Lemma 2.1, Py cannot be
a constant on a positive time duration. Thus there exists at most

one relative maximum point of Py in (O,tf). Consequently, there

exists at most two roots for (2.8) on T. "

Next we consider a special property of the trajectory with

(Y = :
I(t) Imax for all t € T

i b o o5 s ;
Lemma 2.3. Let x( ,Imax) = [Ti( ’Imax)’xz( ,Imax)] be a trajectory
corresponding to the maximum injection I(t) = Lax forall teT.

Then Ti(t;Imax) is the highest attainable ion temperature at any

time ¢ e (O,t,]. "

Proof: Suppose there exists a trajectory X = [Ti,X2 correspond-

ing to an injection program T, such that ﬁ;(tl) > Ti(tl;Imax) for
some time tl € (O,tf]. Since Ti(t) and Ti(t;Imax) are continuous

~
there exists a time t,, O < t, <t;, such that Ti(te) B Ti(tezImax)

f e e ———— oy -

ey
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and Ti(t) > Ti(t;Imax) for all t € (te,tl]. Then we must have

,’i\:i(tQ) > 'i‘i(tE:Imax). Now, fram (1.1),
AT S SRR MO N O R e

Also from (1.1) and (1.2), for any injection program I,

t
Xa(t) = j; ¢y exp{-ca(t - 8) JI(s)as. {2.22)
From (2.11) and (2.12),
& . o
Ti(tz) - Ti 2’Ima.x) = c, Io e exp{- c), - 8) }{I(s) =T }ds.
(2.13)

Here, since T satisfies the constraint I(t) e Q = [O’Imax] a.e.
on T, we must have I(s) - L ax S0 awe. on [0,t2]. Conse-

quently Ti(t2) = Ti(te;Imax) < 0. This is a contradiction. "

Now we are ready to present three possible forms for an optimal

heating program.

Theorem 2.2. The optimal neutral injection heating program takes on

one of the following three possible forms:

I (t) = T o8 [o,tf], (2.13)
‘ Lax ©0 [0t l

I (%) = " (2.14)
l 0 on [tsl,tf] ‘
‘ 0 on [O,to)

T RPN GRS 3 (2.15)
' 0 on [tsg,tf]

P e

-y —




' .
|
These programs are illustrated in Figure 6.1. “ |
' ]
Proof: Fram Lemmas 2.1 and 2.2, pg(t) can only assume one of the
following three forms:
&,
; s pe(t) <q forall t e T; (2.16)
2. q < ps(t) for {0,t..) l
; ‘ % i S8 (2.17)
E T2 x " ) |
% I 0 < pe(t) <q for (tsl’tf‘ |

H (2.18)

A

3. { 0 < p2(t) <q for [O,to) l
)

q
i 4 ¥ l
: o

where q = RE3/2 and t_),t and t; are solutions for (2.8). By

p2(t) for (to,tsl

A

p2(t) <q for (tsl,tf]

5 1’"s2
L & Theorem 2.1, the cases (2) and (3) lead to the injection program (2.1k4)
’ and (2.15) respectively. Case (1) corresponds to I*(t) = 0 for all |
{ t € T, and is not relevant for our problem since Tid > Ti. The ?
» ?:‘ heating program (2.15) corresponds to the special case Ti(tf;Imax) =
t ; & For this case, by Lemma 2.3, there exists only one trajectory

F § id*
: x(*3L ) which satisfies the final condition T,(tg) - T,,. There-

1 f’. Foive x(';Imax) is optimal. "

4 Thus our remaining task is to give a condition for determining

* :
the form of I for each particular case. For this purpose, we look

B e S —

>
in detail at the various trajectories of Ti in the time domain. In
] Figure 6.2:
f L. The curve Cl corresponds to the trajectory with
1 ]

I(t) = L - for all t >0. C, dintersects the line




Ti = Tid at time tcl

temperature Ti(lmax) as t = ®, (The asymptotic stability,

and approaches the equilibrium ion

in the first quadrant Q+ of the T -X2 plane, of an

i

equilibrium point X(I __) = (Ti(Imax) ,X2(Imax)) corre-

max
sponding to I(t) = Imax for all t >0 can be established

by a method which will be used in Theorem 3.1 in the next
gection.)

2. The curve C? corresponds to the injection program (2.1L4)

for some tsl > 0. After the neutral injection is cut at

5 the value of Xe(t) decays exponentially. Hence

sl’

Ti(t) continues to rise until it reaches a maximum value
at some time tm = Tsl’ and then decays monotonically.

5 The curve C corresponds to the special case where the

3
maximum value Ti(tm) is equal to Tid' For this special

case, the injection cut-off time tsl and the time when

Ti(t) reaches T are denoted by t and tcm

id
respectively.

We recognize that tc ,t and tcm are known once I is

1 max

*
given. This suggests that we may determine a special form for I (t)

cSs

by comparing tf with these times. 1In fact, once tc ’tcs and tcm

1
or equivalently the curves Cl and C3 are computed, a special form
*
of . E for a particular problem can be found by comparing tf to
tcl and tcm'

We conclude this section by summarizing the preceding discussion

in the following theorem.

s KA etk




. 1]
. B
g Theorem 2.3 (Algorithm). A special form of I for a given t, can
be camputed with the following procedure.
1 Find tcl’tcs and tcm by computing curves Cl and C3 j
® for a given Imax'
2 Compare tf with tcl and tcm'
3. i i tf <'tc1’ then conclude that no solution exists. i
2 S i/
it . bo If to=t,, thenset I(t) =TI _ forall t e (0,t.].
de i bRy X tf = tcm’ then set
I £%)
: * ‘ nax? 0 [0, = l
] i ¢ @, on [ts,tf]
E | L s e
a where t is computed using the condition Ti(tf) = Tyye
4 6. Otherwise, set
QIR on [O,‘tf - tcm)
() 3 -t 4t
I (%) = I max’ e [tf'tcm’ £ em? cs) ‘ 'll (2.20)
s 0 , on [tet_+t ,t.]
Proof: When tp < tcl’ Problem (S) has no solution since Tyq Can-
. not be reached. If tf s tcl’ then there exists only one trajectory
.
| with Ti(tf) = Tid’ and it is realized by I(t) = Imax for all b
t *
| Hence I  takes on the form (a) in Fig. 6.1. When by <te St
*
o I is of the form (b) in Fig. 6.1, and the cut-off time t can be
S
computed from the condition Ti(tf) = Tyq- Finally, when te o tcm’
b *
k I assumes the form (¢) in Fig. 6.1. For this case, the initializa-
tion of the neutral injection is delayed until t. =t - t and the
L4 0 £ cm
injection is cut at ts = to -~ tcs‘ N




I(t)
1L
Inx :
:
|
0 Jt —» t
(a) ¥
1(t)
)
Igax :
|
5 tage Y sk
(v)
I(t)
A
] |
max : 1‘
| |
0 | [ g t
o te2 t,
(¢)

Fig. 6.1. Possible Forms for s
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Ion~-Temperature Trajectories in Time Domain
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6.3. Feedback Controls and Stability

In this section, we discuss the regulation of the ion temperature
about its desired value. We consider two different forms of feedback

control. 1In both cases the ion temperature T is measured and fed

i
back to control the neutral injection current I. The effect of the
time delay in a feedback control on the stability of the total system
is then discussed.

First, we consider the simplest on-off feedback control such that
either the maximum injection or no injection is supplied depending on

whether the ion temperature is less than or greater than the desired

value Tid’

I(t) = I(T (%)) = . (3.1)

‘ Tnaxs  Ty(t) <Tyy 1
l 0, T,(¢) 271y, j

The behavior of the complete feedback control system in the first
quadrant Q+ of the Ti = X2 plane is shown in Figure 6.3, where

r
the curves 1 and F2

=3
kol
I

y (3.2)

—
el
1

= cBI(Ti)/ch,

are the gzero-rate curves for Ti and X, respectively. Since T,

2 2

is discontinuous, Fl and fé may not intersect and the equilibrium
point (e.p.) may not exist. In fact, when Tid is less than the
equilibrium ion temperature corresponding to I(t) = Tax &S is the

case shown in Fig. 6.3, the curves Fl and F2 do not intersect.

86
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Fig. 6.4,

Typical Trajectory of the Smooth Feedback
Controlled Injection System
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CHAPTER VII

CONCIUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

7.1 Multiple Stage Optimal Control Problems

Three classes of multiple stage optimal control problems moti-
vated by the problems of minimum input energy heating of toroidal
plasma by means of neutral injection were studied. The derived results
were utilized in analyzing plasma heating problems.

First, a two-stage optimal control problem having an integral cost
functional with an integrand which assumed different forms before and
after an unspecified switching time was examined. The existence of
an optimal control pair (control, switching time) for a general class
of problems was established using properties of augmented attainable
se*s. A necessary condition was derived via the methods of calculus
of variations. A more general necessary condition in the form of a
maximum principle was obtained by decamposing the two-stage optimal
control problem into two standard problems. In both cases an optimal
switching time was characterized by the requirement that the Hamilton-
ians corresponding to the first and second stages are equal at the time
of switching. A sufficient condition for the nonexistence of an opt-
imal intermediate switching was derived for a linear regulator problem
with a two-stage quadratic cost.

Secondly, a generalized multi-stage optimal control problem was
considered, for which the integrand of the cost functional was allowed
to change its form fram one to another among N given forms at any

instant for any number of times. This problem was reduced to a

9k




APPENDIX A

STANDARD EXISTENCE THEOREM

Consider the following optimal control problem:

Problem. Given a system x = f(x,u,t), a control time interval

[to,tf], terminal conditions x(to) € X. and x(tf) € X.. where

0 f

X and X_ are nonempty closed sets in ]En, and a control con-

0 £
straint set O(t) € EY, te [t,t.), find an admissible control w

which minimizes the cost functional
tf
@) = [ x(t) ut),b)at, (a.1)
to
i.e., J(u*) < J(u) for any admissible control wu. (A control u
is said to be admissible if (1) u(t) € o(t) a.e. on [tO,tf], and
(2) the corresponding trajectory @ satisfies q"(to) € XO and
]
o(ty) € X,.) | |

We state the following Lemma without proof. (For a proof,

refer to [ 3].)

Ierma A.1. Assume that the following hypotheses are satisfied.

R

3 1 The set of admissible controls A is nonempty:

2. There exists a campact set ﬂo (:En+l such that for all - |
admissible trajectories ¢, (t,p(t)) € ﬂo, for all ‘
t € [to’tf];

3. atany T € [to,tf], for every €& ~ 0, there exists a

8(e) >0 such that for t ¢ [to,tf]




|t-t| < 8(e) implies (t) is contained in a closed

e-neighborhood of T);
the set ((t) is campact for all t ¢ [to,tf];
for each (t,x) € R, the set v'(t,x) 1is convex, where

n+l

vi(t,x) = ¥ = (yp¥) € B iy 2 L(xu,t),

y = f(xguot)’ u € qt) }s (A-l)

1

and R C E™ is an open set such that Q‘O c R;

L 1is lower semi-contimuous and f 1is contimuous in R x U,

where U C E® 4s an open set such that L{e[t ]O(t) cu.
T

ot

+*
Then there exists an optimal control u such that

J(u*) < J(u)

for all admissible u. ||

v e e A———
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APPENDIX B

CMPUTATION OF FIRST-ORDER VARIATIONS

* * *
let (u ,tl) and x be an optimal control pair and a corre-

A

sponding optimal trajectory. Ilet (u,ﬁl) and X be a perturbed

control pair and a corresponding trajectory such that,

A A * *
(u,t) = (u + ev,t, +e1), (B.1)

a *
X=X +E€y, (B.2)

where € >0 and (v,T) and y are respectively a perturbation '
pair and their corresponding trajectory variations. It is known

that y obyes the variational equation :
s * *
y = (3f /ax)y + (3f /au)v. (B.3) i

]
j 4
Assume initially that tl € (to,tf). The other cases will be treated '

later. Here we use the superscript "*" to denote optimality and

1" AN

e m—

to denote a perturbed quantity.

First we introduce two functions. Iet p be a differentiable

N Rt

adjoint vector which satisfies

b= (a1,/0x)" - (ag/ax)", (B.4)

NE———

where 1 =1 on [to,tl) and i =2 on (tl’tf]' Let the
Hamiltonian Hi(x,p,u,t) be defined by

Hy(X,P5u,t) = <Ly (X,u,t) + P'E(X,u,8)  1=1,2.  (B.5)

102
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Y = : g i " » . v ; - s it _,J"!

Using (B.5), (B.4) can be simplified to
5 T
e -(ani/ax) . (B.6)

Now the cost corresponding to a perturbed control pair (ﬁ,fl)

is given by
i e, TR o A
J(u,t.) = J L, (x,u,t)dt + f L.(x,u,t)dt. (B.7)
1 1 2
%o Y

By adding terms which are identically zero, we get
£ t

i el . T, % A g T, 5
J(u,tl) = [1.l + p (x-f)lat + - [L2 + p (x-f)lat
t t ’
0 1 j
£ e i G |
- [ Ttofxe)lat + [ (p7x-Hat. (.8)
ty tfl
At each instant of time, ﬁi can be expanded as :
A * * »*
B =g 4 e(a}{i/ax)y + e(BHi/au)v + o(€g). (B.9) i

e |
'

Substituting (B.3) and (B.9) into (B.8) yields

t
r-l *

JiLE)) = [ (B -]+ el - (3Ry/ex)y - (an)/u)vHlat ;
0 |
be T.* % T. * * l. A
* [ [p% -Hy+e{p'y - (3H,/3x)y - (3H,/3u)v]kt + o(e) ‘ . 3
t Y & 3
f‘tl : * * ‘e T * * i ‘t
=J [pi-H]dt-rJ ([p't - H.)at !
t . t . =
o, 1 i 3
e [l + arl/en ™y - (ar}/ou)viat '
£
0
- ff [0h + (auy/ox)" )y - (3t /au)viat :
t, |
:
:
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T 0* * T-* *
+el(p_ x_ - H ) -(px -H )

+ e[(pfy_ - pgyo) + (pgyf - py)] +o(e),  (B.10)

where the subscripts "-", "+", "O" and "f" denote the left and
*

1l f
Since y, =0 (xo = x(to) is fixed) and p satisfies (B.6),

right limit at t., and evaluation at to and t_. respectively.

equation (B.10) can be simplified by combining the first two inte-

* *
grals to give J(u ,tl).

& &
A A * % »*
J(u,tl) = J(u ,tl) -e( Jtl (aﬂl/au)vdt + th(aH;/au)vdt]

0 1
T . % T.* * *
+elp* -px -H _+H,IJT
T T T
+ elpye + Py_ - Py,] + o(e). (B.11)

Here the perturbations Y ¥, and T satisfy the following rela-

tion (see Fig. A.l):

Vo=¥ + @& =x ), (B.12)
Using this in (B.11), we get
s te
J(0,€.) = J(u,t0) - el f (3H, /du)vat + I (aH;/au)vdt]
1 1 s 1 X
0 1

sel(p_-p)" & + () + 1)
+e(p_ - p+)Ty_ + sprf\yf + o(€e). (B.13)

Hence the first variation &J

NN * *
J(u,tl) - J{u ,tl)
& = lim = 5 (B.14)
£-0

104

e e ———— -

xhe

o e P i S i N e e N b

—‘M



is given by
> te
* e +*
& = - J (aﬂl/au)vdt - | (BHE/au)vdt +(p - p+)Ty
t t z .
0 1
o * *
» [{p - p+)Tx_ + (-H)_+ n2+)]1 + ngf. (B.15)

*  #
For optimality of (u ,tl), & must be zero for any perturbations

Vy Y » T and Ve Hence we finally arrive at the following set of

conditions.
BH:/au ) w0, f=ib (B.16)
p(ty) = 0, (B.17)
*

p(ty ) = B(t,), (B.18)
* *

Holox = Holo% (B.19)
1} 2],

*

When t; is at one of the end pbints, the perturbation at tl
*

cannot be arbitrary. For example, suppose tl = to then 1 must

A

be nonnegative so that t, = t, + €7 ¢ [to,tf]. For this case, the

first order optimality condition is given by

& > 0. (B.20)

After eliminating the terms connected with the variations in u and
x (we note that the conditions (B.16) and (B.1l7) remain satisfied

since y,. and v are arbitrary), we have
* T * ® T %
&(1) = (L =P f - Ly +pf)r (B.21)

Hence we must have
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Hl(xO’p(tO) sU_ ’tO) i H2( xO,P( tO) ’u+’t0) . (B.22)

*
The other case where t. = t

1 ¢ Can be treated similarly. In fact,

&I (1) = (L;_ - pfff - L;+ + pff:)r, (B.23)

with v <O for this case. This and (B.20) give

* *
Hy (e (8 sp(te)u_,tp0) > Hy(x (8,),(¢,) 5 ,t,). | (B.24)
Notes:
(N.1) u_and u_ at t-= ty and t, are solutions of
(Bﬂl/au)(x(t),p(t),u_,t) lt______to or tf = O, (B-25)
and
<aH2/au)(x<t),p<t),u+,t)lt___to or t, = 0. (B.26)
* A *
(N.2) If we consider J (t,) = J(u, ,t,) to be a function of t
1 | 1’1 1
as we have done in Section 2.2, then the first order var-
iation of J* with respect to tl is actually given by
* * *
&J (tl) o= (_Hlit - T H?'t +)T- (B'ﬂ)
1 1
In fact we have
* * X
ar(t,)/at, = 'Hlltl— + H2|tl+. (B.28)
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APFENDIX C

MAXIMUM PRINCIPLE

Recall the optimal control problem comsidered in Appendix A.
Assume that f and L are continuously differentiable in

E xEXE. ILet the Hamiltonian be given by

H(x,p,u,t) = -L(x,u,t) + pr(x,u,t). 0.1}

*
Suppose u is optimal, then it is necessary that
1. there exists a nonvanishing adjoint vector p* which
satisfies

B () = -(am/ax)T(x"(£),p (£),u"(t),t)

* *
P (to) | the tangent plane HO to XO at x (to), (C.2)

* *
P (tf) | the tangent plane My to X, at x (tf),

2. max H(x (t),p (t),u,t) = H(X (), (£),u (t),t) ;

ueql :
&.e. on [to,tf]. (0‘3) t
i
Remarks ¢ !
(R.1) When the final time is free, then at an optimal final time :
4 "
tf we have i
PUEE R R NN S S

H(x (tf) ’p (tf) 9u (tf) ,tf) - 0- (C.h)
. !
(R.2) When X, and/or X, is reduced to a point, p (tg) and/or |

*
p (t f) can take on any value. When xf -« B (correspond-

*
ing to free end point), p (tf) = 0.




t
§
[
{
! (R.3) When the cost functional includes a terminal cost, i.e.,
14
tf
) = [ Mx(e)u(),0)at + K(x(te),bg),  (€.5)
to 3
and X, = IEn, we have
;g
L4 3
* % *, % x
(c.6)
: x ¥, K, *
H |t; = -(aK/btf)(x (tf),tf),
' |
.

where K is assumed to be continuously differentiable in

"" E” x k. "

’ The maximum principle was originally proved by Pontryagin et al.
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APPENDIX D

KUHN-TUCKER CONDITIONS

A statement and discussion of the Kuhn-Tucker conditions can be
found in any standard text on methematical programming. (For example,
Chapter 3 of Canon, Callum and Polak [ £]). We present the following

Iemma without proof.

lemma D.l. Consider the following nonlinear programming problem on

Em

minimize J(u),

5 TR, N (D.1)

]

subject to gi(u) 0y 1

T TN A

i}

rj(u) ~ 0’ j

*
Let u solve this problem. Assume that J, 8 and rj are
*
differentiable at u . Then there exist a set of nonpositive multi-

pliers XO,XI,...,XK and a set of multipliers Hyskos e esti s such

that
*
n Xigi(u ) =0, 1w LBiuisks (D.2)
* k * £ *
8, AV )+ T X Vegw)r & p VE() =0, (DY)
0 A i o : J J
i=1 J=1 ”
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APPENDIX E

COMFUTATION OF GRADIENT ¥ M(u)

Recall that ¥ M(u) has three terms

k
VuM(I_l_) - XOVEJ(B) & uVEh(xk(t_l_)) - 1§1 XiVEgi(g). (E.1)

We will calculate each term separately. First consider Vugi(g).

Fram (IV.2.3), we get

3. 0 vt o3
(u) = : (E.2)
Hence
=
X r2Ai(ul - ul)
| B0y - )

where G& = (v, + wi)/2, w380 aiks

Next compute V h(x (u)). Iet x, £ 5 & o 1,8, .0 k, then

(3n(x, (w))/u,) = (dn(x,)/3x,)(3x,/3u,)

(ah(xk)/axk)(axk/axk_l)...(Bxi+1/axi)(6x1/aui)
(E.%)

Let x(t;ti 1’xi-1’ui) be the solution trajectory of the system

equation (IV.1l.1l) on a subinterval [tinl’ti) such that

S ——




x(t;ti-l"i-l’ui) = f(x(t;ti-l’xi-l’ui) ,ui)o

(B.5)
Rty _y3%y 0%y 1o8y) = Xy o

Then x(t;ti_l,xi-l,ui) on [ti-l’til can be written as |
t |
x(t;ti_l,xi_l,ui) =X 4+ Jt f(x(T;ti-l’xi-l’ui)’ui)dT‘ |

-1 (E.6)
By differentiating both sides by ug, we get 1
3x(t;ti_l,xi_l,ui)/aui 1
t E

o CLag/ax) (x(sty _yaxs 1ous),ug) H(ax/duy) (T3t qa%, 15u,)]

i-1

& (af/aui)(x(r;ti_l,xi_l,ui),ui)]dT. (E.T)

This shows that Bx(t)/aui on [ti_l,ti) satisfies the initial

value problem

{alax/du,)/at }(t)
’axfaui)(t

fx(x(t),ui){(ax/aui)(t)} & fu(x(t),ui),

1.1) = 0» J (E.8)

where the subscripts x and u denote partial differentiation with

respect to x and u respectively. Hence on [ti_l,ti]
t
ex/am ) (%) = [ 26,08, (x(v) u,ar, (2.9)
t
i-1
where «(t,t) is the state transition matrix of the system (B8},

l.e4;

dé(t,t)/dt

fl

£ (x(t) 5u, ) ¥(t,7),
e " 3 } (£.10)

(T,7) T

"
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Therefore axi/aui is given by
1

i
axi/aui = J; ¢(ti,w)fu(x(r),ui)dr. (B.11)
i-1

Now, by differentiating (E.6) with respect to x; 1 end replacing i

with j, we have for t ¢ [tj-l’tj)

t
(/o )(6) - 1= [ x(e)ug) ((xfax ) (0)ar
J-1 (E.12)

Again this shows that (bx/axj_l)(t) is a solution of

la(ox/ax,_;)/at}(v) = £,(x() u ) {(3x/3x; 1) (%)},

(E.13)
(6x/0xj_l)(tj_1)= T
By camparing (E.13) with (£.10) we immediately have
ax. [ax. . = (3x/3x, .)(t,) = ¥(t,,t, ). E.14
sfoxs g = (3x/ax; ) (y) = ¥ty ) (E.14)

Using (E.9) and (E.14), (E.4) can be written as

(3n/3u) (%, (u)) =

&
i
(3n/3%, ) &(ty sty 1) ee 8ty q0t,) J; 8(ty,7)E (x(1),uy)dr
i-1

)

t
i
(an/axk) J;i-l @(tk,f)fu(x(w),ui)dw . (B.15)

This gives

P e ey v e




t ﬂ
+(3n(x,)/3x,) j‘t‘z 8(t,, )8, (x(1) u, )ar

t
N5 () = | u(En(x)/3m) ftf Bt ,T)E (x(1) s )dt | (E.16)

-
L u(3n(x, ) /3%, ) j't:-l by 1)L, (x(7) 5y )dr |

Now we proceed to the final term VuJ(t_z). Since x(t), t <t

does not depend on Ugs we have

i
(o2
~

(37/3u,)w) = Lj(x('r),u‘.j)dT}/iiui

T Ly (x(7) yuy) {(3x/2u,) (1) ]

"
(1

+ 3:;1 th_l ij(X(T) ,uj){(GX/aui)(T) Jat (E.17) X

Again by (E.9) and (E.14), for T > ty
t

(/) (1) = [ ¢ra)g (x(s) 0 )as. (£.18)
i-1

Substituting (E.9) and (E.18) into (E£.17), we get
t

i ! ]

(BJ/aui)(\_l) = It [Liu(x(T)’ui) 4
i-1 T :

* Lix(x(‘r),ui) J‘ #(7,8)1f, (x(s),u, )ds Jav

o b1 .

i
L L, (x(7),u 8(7,8)f ,uj)ds drt. | 4
J=in by, F ) J)jti_l il ]

(B.19)
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By interchanging the order of integration and rearranging terms,
(E.19) can be expressed as
b,
3d(u)/au; = [ 2 L, (x(1),u.)é(,s)atlf (x(s),u,)ds
w)/ouy I i 1+1I; 3x 3 u i
t t
i i
* L (L, (x(8),0) + [ 1y, (x(7),u)8(7,8)at £, (x(s),u,) as.
S
=1 (B.20)
For notatiomal simplicity, let
Lx,u,t) £ L, (x,u,) on T,y UL U8 (E.21)
then {
t t .
3d(u)/au; = f [Lu(x(t),u,t)+J L (x(7),u,7)#(T,t)dTf, (x(t),u;) ldat.
t t
i-1 <
(B.22)
Combining (E.15) and (E.22) leads to .
' 4
33(w)/3u; = Ny (33(w)/Buy) + u(an(x (w)/ou;) i %
t, P
1 '
- | e tuenix) )" |
a tye i
N L () u,m)ar e (x(4) 0, at |
0 t X u i %
t, }
i |
+ f Ao, (x() u,t)dt. (E.23) 8
t !
1-1 !
\

Now let p be an adjoint vector satisfying

B(8) = =2 (x(8),u(6))p(t) - ALy (x() u(t)D),

(E.2%)
p(t,) = u(an(x,)/ax,)"

Equation (E.24) can be solved to yield j




t
k
p(t) = ¥(t,t)p(t,) + j; V(& TN L (x(7) 0,7, (E.25)

where y(t,T) is the state transition matrix for the adjoint system

(E.2h); i.e.

S u(6,1) = £r(x(),u(6) W(t,T),

(E.26)
W(T,T) = I-
It is well~-known that
W(t,1) = (871 ,T))T < 67(T,t). (E.27)
Now, combining (E.23), (E.2k), (E.25) and (E.27),
ti
a3w)/auy = [ DL (8D ,0,8) + pT(8)E, (x(8) 0, ot (B.28)
Y
We can further simplify (E.28) by introducing the Hamiltonian
H(x,p,u,ko,t) = ROL(x,u,t) + pr(x,u). (E.29)
Then
ti
33(5)/au1 = j (3H/3u) (x(t),p(t) ,u(t),Ny,t)at.  (E.30)
t
i-1

Note that since L(x,u,t) = Li(x,ui) on [ti-l’ti)’ we also can

write
ti
33(3)/au1 - J (Bﬂi/aui)(x(t),P(t),ui,Xo)dt, (E.31)
Y34
by defining
Hi(x,p,ui,)b) = )bLi(x.ui) + pr(x,ui). (E.32)

Thus, we have

™
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v, () =

Finally, combining (E.33) and (E.3),

vuM(gf).

v M) =

where

b

t
\rti (aH]_/a‘l) (x(t),p(t) "y ;7\0)dt

t
.ftf (3H,/3u,) (x() ,p(t) ,u,,2;)at

By

[ (3H /o, ) (x(t),p(t) uy A )dt

-1 *

r tl i i —
_ft (3H /3u, )(t)at + 2N (u) -1)
0

b * * -
ge (aﬁz/aue)("f)dt +2 M (uy - T,)

1 g
t * : * -
[ (an/au ) (8)at + 2 (v - )

| ka1

(3K, /3u,)(t) = (3H, /3, )(x"(£),0" (£) ug,20)
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(E.33)

we have the desired gradient

(E.34)

(E.35)




APPENDIX F

COEFFICIENTS OF THE TWO-TEMPERATURE MODEL

The coetficients A 3’ l& and C P of the two-temperature model

(v.1.2a) ~ (V.1.2d) are positive constants given by

A = 3.7x10% 2 (a0, A, = A(nD), 4
A, = 0.4z (a2 )7, A, = 016N (N 2)F, i
Ay = 1860 (), B = 6.05407(a/R)2 %2 (2 1), | 1
B, = 1.11a"/%(n 7 288%) L, B, = 5.2a073(a/R)*/ 24/ % 2R |
B, = 0.186n (n.2 7), B, ~ 1.860,(N.2) 7, |
c, = 0.562A )", c, = Ai/ % 3
(F.1) {
with s
NZepr = 2 NJZQ’ §2=Z NJA:lzg’ it Lo~ o Xy ;
J J I |
(F.2) ]

where A and Z; (resp. Ay and ZN) are the mass number and ionic

g — v ——

charge number of the ions (resp. injected neutral particles) respect-
ively; K j and Z 3 are the mass and the ionic charge mumbers of the
J=th species in the plasma or the impurities; Ne’Ni’No and Nj are

respectively the number densities of the electrons, ions, neutrals

Rl i e —
" e =

i o i

and the ions of the j-th species in the impurities; zeff and 2 are

respectively the effective and the modified effective charge numbers;

B 1is the toroidal magnetic field; a and R are the minor and major

radii of the plasma torus respectively, and vy J is the correction
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factor for the Joule heating term (including trapped-particle effects
and Z-correction). The coefficient A_ depends on the regime of
electron diffusion. In the collisional regime (Te < T:). a=1/2,
S
B =0 and AQ = YoZoppNe/(8B)", where vy, is an anomaly factor, and ;
T: is the transition temperature for this regime. In the regime
(Te > T:) where the electron-loss is dominated by trapped-electron ;
2 fo ‘on "3 22
instability, we have « = 13/2, B = & and K:?:'yeNe/(B 2y pe€ /ape),
where € = a/R and Bpe = 0.3 is the "poloidal beta" associated with

the electrons.

For the T.F.R. experiments, the specific values for various para-

meters are: 'yJ-_-I?. A=1, Zi=l’ a=2, R=1, Zn=2, B=1U, ZN=1. AN=1,

Zopp= Y Z2=1/2, N,=2, N=3 and N =5, where the units are as

follows: T_,T, (KeV), E(10 KeV), I (10 amperes), Ip (106 amperes),

NN (1007 /em’), N (20 /en?), N (10" /em’), & (10 em), R (100 cm).

and B (10“ gauss) . }
The two-temperature model is formulated on the normalized time

scale T which is related to the real time scale t(m sec) by

at = (:EBAN;lz;E)dt.

The constant R in the cost functional (V.1.4) is given by

R = 1.86A/(2°N,). (F.3)

S
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APPENDIX G

HAMILTONIANS AND ADJOINT EQUATIONS FOR PLASMA HEATING PROBLEM

The Hamiltonians (V.3.1) and (V.3.2) in Chapter V are given in

explicit form as follows:
s -3/2 -1/2  _ 2 2n-3/2
Hz(x,p,I,t) = (EPBTe +E P, RE)I AleTe

+ pl{AlIsT;B/ " A21;6'I‘: - (T, - Ti)T;B/ on, +AX)

+ DAy (T, - Ti)'r;3/2 - 8 (Ty51,) = BT, + BoX, )

+ 1)3[((21'1‘;3/2 + CQE-3/2)X_L]

+ 0,006, 23/2 + ¢ 83/x, ), (G.1)

Hl(x,p,I,t) = Hg(x,p,I,t) + REI. (G.2)

The adjoint equations (V.3.10) are written explicitly below in
equation (G.3). Note that since the Jacobians (GHI/dx) and (GHQ,/ax) are

identical, the adjoint vector p(t) satisfies the same differential

equation (G.3) on two stages.

Vol %“1‘?25/2
+ 91{% Allpar;s/z ”"A.?I;B T‘:-l '% Ay(Tg - 3Ty )T;S/e}
+ otk Ay(T, - 3T,/ 2 4 p, (2 107/ %0 - 2 0,107/ 20 )
B REE LAY
B, = pl{-A3r;3/2} + pzfA3r;3/2+ 38, (T,31)/a1y + B,
By = Py{-Ag} + p3{clr;3/2 + c23'3/2},
By = Ppl-Bg) + ph[cl'r(?/2 + c28'3/2}. (G.3)
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